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1PROJECT OVERVIEW

1.1 Introduction
This report summarizes the FY'90 technical developments of the NESSUS system for component
risk assessment for the Probabilistic Structural Analysis Methods for Select Space Propulsion
Components contract. The technical efforts focused on a new automated reliability algorithm, an
extension of the existing advanced mean value probabilistic algorithm, resistance models which include
state-of-the-art models, multi-factor interaction model, and a probabilistic constitutive relation model,
and arisk module that can compute the risk with respect to cost, performance, and a user-defined criteria.
The team for the FY*90 effort consisted of the following individuals and organizations:
SwRI: Dr. T.A. Cruse
Mr. H.R. Millwater
Mr. B.H. Thacker
Dr. S.V. Harren
Dr. Y.-T. Wu
Dr. Y. Tomg
Dr. R. Aithal
Ms. J.P. Buckingham
Rocketdyne:  Dr. K.R. Rajagopal
University of Arizona:  Prof. P.H. Wirsching

1.2 Summary of FY’90 Accomplishments

The principal focus of the component reliability subtask was the development and implementation
of a new reliability algorithm. This algorithm is described in Chapter 2. In addition to a new reliability
algorithm, the Advanced Mean Value algorithm present in NESSUS 4.2 was automated. This feature
is also discussed in Chapter 2.

The component resistance subtask focused on two efforts, NESSUS coding and resistance model
formulation. The NESSUS code was enhanced so that very general resistance models, even those which
involve nonlinear combinations of finite element results and material resistance variables, can be
analyzed in a straightforward manner. The new capabilities are documented in Chapter 3.

A number of resistance models are formulated according to the statement-of-work by SwRI,
Rocketdyne, and the University of Arizona. A summary of the investigated and implemented models
is given in Chapter 3.

The component risk subtask focused on the development and implementation into NESSUS of
algorithms to compute the structural risk. The risk with respect to cost, performance, and a user-defined
criteria can be computed by NESSUS. This capability is discussed in Chapter 4.

Various supporting technology was developed in FY’90 in support of component reliability,
resistance, and risk, and is discussed in Chapter 5. A fast convolution method for FPI was developed.
A probabilistic interface was developed around the BEST3D boundary element program and the expert
system help screens were enhanced.



The above-mentioned technology is contained in NESSUS 5.0. The release notes for NESSUS
5.0 are contained in Appendix A.

1.3 Future Effort

The FY'91 effort will focus on system risk assessment. The enhancements to NESSUS in FY’90
for component reliability, resistance, risk, and supporting technology lead directly into the FY"91 work

on system reliability.

1.4 Publications
The following papers were presented and/or published during FY*90.
1. " Application of Probabilistic Structural Modeling to Elastoplastic and Transient Analysis,"

T.A. Cruse, H.R. Millwater, S.V. Harren, and J.B. Dias, presented at IFIP WG 7.5 Working
Conference, Berkeley, California, March 26-28, 1990 (Proceedings to be published by
Springer-Verlag).

2. " Application of the Probabilistic Approximate Analysis Method to a Turbopump Blade
Analysis,” B.H. Thacker, R.C. McCling, and HR. Millwater,
AIAA/ASME/ASCE/AHS/ASC 31st Structures Structural Dynamics and Materials
Conference, Long Beach, California, 2-4 April 1990.

3. "Computational Methods for Probability of Instability Calculations," Y.-T. Wu and O.H.
Bumnside, AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics and
Materials Conference, Long Beach, California, 2-4 April 1990.

4. "Probabilistic Analysis of a Materially Nonlinear Structure,” H.R. Millwater, Y.-T. Wu,
and A.F. Fossum, AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics
and Materials Conference, Long Beach, California, 2-4 April 1990.

5. "Probability Approach for Strength Calculations," C.C. Chamis and T.A. Cruse, AGARD
Structures and Materials Panel Workshop, 70th SMP Meeting, Sorrento, Italy, April 2-6,
1990.

6. "Probabilistic Structural Analysis, Reliability and Risk of Critical SSME Components,"

T.A. Cruse, C.C. Chamis, and K.R. Rajagopal, presented at 1990 Conference on Advanced
Earth-to-Orbit Propulsion Technology, Huntsville, Alabama, May 15-17, 1990.

7. "Structural Reliability and Resistance Modeling with the NESSUS Software System,” S.V.
Harren, H.R. Millwater, and B.H. Thacker, presented at the 26th AIAA/SAE/ASME/ASEE
Joint Propulsion Conference, Orlando, Florida, July 16-18, 1990.

8. "Probabilistic Structural Analysis Methodology and Applications to Advanced Space
Propuision System Components,” T.A. Cruse, K.R. Rajagopal, and J.B. Dias, presented at
the Symposium on Computational Technology for Flight Vehicles, Washington, D.C.,
November 5-7, 1990.



2 COMPONENT RELIABILITY

This task focused on developing and implementing the reliability algorithms in NESSUS. The
existing advanced mean value algorithm (AMV) p-level procedure was enhanced, and a new AMV
based z-level procedure was developed. The p-level algorithm is used to compute the response value
corresponding to a specified probability. The p-level procedure is most useful when computing the
entire CDF. The z-level algorithm is used to compute the probability corresponding to a specified
response, i.e., the structural reliability.

2.1 AMV+ p-level Procedure

The AMV+ p-level procedure is used to compute the response corresponding to a specified
probability, or p-level. In NESSUS, the method is used when points along the entire range of the CDF
are to be computed or the response at specified probability levels is to be computed. This procedure is
selected by serting *ANALYTYPE =0 or 2 in the FPI input section of PFEM.

Table 2.1 gives a schematic of the method, along with the number of finite element solutions that
are required to perform a first order probabilistic analysis. In Table 2.1, N is the number of input
random variables and M is the number of p-levels. MVFO refers to "mean value first order,”" and
AMVFO refers to "advanced” MVFO. In an MVFO analysis, (N+1) sensitivities are computed and
used to construct a linear performance function (g-function) about the mean values of the random
variables. In step 2, an update (or "move") is performed, which entails a finite element solution, to
update the response value at each of the M probability levels.

A fully automated AMV+ p-level algorithm has been implemented in NESSUS. The user inputs
an allowable number of iterations and a convergence tolerance. At each p-level, NESSUS continues
iteration until either: i) the allowable number of iterations is reached, or ii) the relative change in z is
within the convergence tolerance.

2.2 AMV+ z-level Procedure

The AMV+ z-level procedure is used to compute the probability corresponding to a specified
response or z-level. In NESSUS, the method is primarily used for reliability calculations, where p must
be calculated for a specific value of z.

The key to efficient reliability analysis is the ability to compute quickly the location of the most
probable point (MPP). To reduce the number of finite element solutions required while searching for
the MPP, an algorithm has been devised and implemented to estimate a good starting MPP. Once the
estimate is obtained, a straightforward iteration procedure is used to converge on the desired MPP. It
should be noted that the sole purpose of the algorithm used to obtain the starting MPP is to minimize
the number of finite element solutions, and can be modified or adapted as experience warrants.

The AMV+ z-level procedure works in "u-space," which is related to p by 2p = 1+ erf(u/\2), and
"erf" is the error function. An outline of the AMV+ z-level procedure is given below.

A. Compute an initial estimate for the most probable point.
1.  Estimate the probability level u using u = az*+ bx+c, where g, b, and ¢ are determined from:
i) u at the mean value of z,
ii)  du/dz at the mean value of z, and



iii) the AMV result (move) at 4 = +5 or -5, depending on whether the z-level is greater
than or less than its median, respectively.
2.  From the probability level u computed in Step A-1, compute the MPP using FPI and the
response using a move (AMYV procedure).
3.  Compute a new estimate of the probability level u using u = az’+ bx + ¢, where a, b, and
c are determined from:
i) u at the mean value of z,
ii)  u at the MPP obtained in Step A-2, and
iii) the AMV result (move) at u = +5 or -5, depending on whether the z-level is greater
than or less than its median, respectively.
4.  From the probability level u computed in Step A-3, compute the starting MPP using FPL
B. Given a starting 4 and MPP:
i) obtain sensitivities at the MPP, and
ii)  estimate an improved u and MPP for the input z-level using FPL
C. Repeat Step B until either:
i the allowable number of iterations is reached or
i the relative change in u is less than the convergence tolerance.

A significant ingredient of these two algorithms is that NESSUS will automarically iterate until
either a maximum number of iterations is reached or a user-specified convergence tolerance is satisfied.
For the p-level algorithm, the convergence is based on the computed z between two successive iteration
steps, ie., convergence is achieved when |(z,—z,.,)z]| < tolerance. For the z-level algorithm,
convergence is achieved when | (&, — i, ¥u| < tolerance. With this procedure even highly nonlinear
problems can be analyzed with confidence.

As an example, consider a thick cylinder under internal pressure with a perfectly plastic material
model. This problem was shown to have a nonlinear response in the paper presented at the 31st SDM
conference, "Probabilistic Structural Analysis of a Materially Nonlinear Structure," by H. Millwater, et
al. The computed CDF using the AMV+ p-level algorithm is shown in Figure 2.1. Because of the
nonlinear response function, the AMV move was not sufficiently accurate, 1st iteration was necessary.
However, in this problem, an analytical solution was known which will not be known in general. Thus,
in general, the engineer will not know when the solution is sufficiently accurate. With the new iteration
capability, NESSUS will automatically iterate until convergence. Figure 2.2 shows the comparison of
the converged NESSUS solution with Monte Carlo. Figure 2.3 shows the probabilistic sensitivity factors
for this problem. NESSUS iterated until convergence occurred after the second step of iteration 1.

The z-level algorithm was also used to analyze this problem. Table 2.2 shows the results for several
iterations at several z values. The computed probability at each z level corresponds with the p-level
results.

These algorithms have also been exercised thoroughly in the validation problems located in
Appendix C.



Table 2.1

Schematic of AMV+p-levels Procedure

Iteration Step Analysis Number of Finite
Element Solutions

0 1 MVFO N+1

0 2 AMVFO (Move) +M

1 1 First Order +(N+1)xM

1 2 Move +M

2 1 First Order +(N+1)xM

2 2 Move +M

Table 2.2
Elastic-Plastic Cylinder
PFEM z-level Validation Problem
Zievey J
d mvio quaq est | guad esc 2 ist iter Znc iter l icer S icer

-.7%81 -11.2646 -J.4841E+01 *-0.5744E+01 -J.4958E+01 -3.4957E+01 -2.4957E+01 ~3.4957E+01
-15828. -9.6754 ~3.4960E+01 -3.4765E+01 -J.3998BE+01 -3.3997E+01 -3.3997E+01 -3.3997E+01
-14018. ~6.0063 ~J.4274E+01 ~-3.3572E+01 -J.3031E+0Q1 -3.3033E+01 -3.3033E+01 -3.3033E+01
-12273. -3.3547  -J.2834E+01  -3.23S1E+01  -3.2117E+01 -).2058E+01  -3.2058E+01  -0.2058E+01
-10897. -1.22587 -J.1161E+01 -J3.1120E+01 -J.1081E+01 -2.1071E+01 -3.1067E+01 -3.1067E+01
-3573.8 2.8713 2.89035E+00 2.9496E+00 . 92S9E+00 2.9308E+00 2.9304E+00 2.9304E+00
-%031.: ~.7340 2.1896E+01 2.2025E+01 C.1941E+01 2.1941E+01 2.1941E+01 C.1941E+01
-4524.6 2.5474 2.2903E+01 2.29023E+Q1 2.2955E+01 2.29S5E+01 2.2955E+01 2.29S5E+01
-3016.0 3.3640 2.3992E+01 J.4103E+01 35.3971E+01 2.3971E+01 2.3971E+01 2.3971E+0L

limitea to U = -3
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3 COMPONENT RESISTANCE
3.1 Introduction

This section presents the work accomplished under Task V-B "Component Probabilistic Structural
Resistance." The objective of Task V-B is to adapt/modify the computer codes (NESSUS) to simulate
computationally the uncertainties in component structural resistance.

3.2 Status
Structural resistance modeling has been fully integrated in the NESSUS computer program. This
capability was achieved through several key developments:

* A completely general facility for modeling structural resistances was integrated within the
framework developed under Task V-A for computing structural reliability.

* A new data processor was developed and integrated into NESSUS that allows NESSUS/FEM
results such as stresses, strains, and displacements to be used in defining other response measures
such as maximum principal stress, plastic strain range, or RMS displacement.

* A new random variable type "COEF" (for coefficient) was added to NESSUS/FEM. This new
random variable provides the capability for modeling probabilistic material damage, which is
defined in terms of some number of COEF random variables.

» Whenever possible, options were added to allow the user to provide custom resistance models,
post-processing options, etc., via user-programmable subroutines.

* The input format and reader were completely rewritten to simplify and streamline the additional
input required.

The following sections provide a more detailed description of the work completed under this task.

The overall approach to resistance modeling in NESSUS is described in Section 3.3, followed by
a summary of the required code structure changes in Section 3.4. A significant amount of research was
performed to determine what types of resistance models should and could be incorporated within the
computational framework of NESSUS. From this work, a database of resistance (or reliability) models
was compiled. In Section 3.5.1, this database is categorized and described. Models based on simple
limiting values of structural response are described in Section 3.5.1.1. Models based on material strength
are described in Section 3.5.1.2, and models that attempt to account for material degradation due to
damage are described in Section 3.5.1.3. Next, in Section 3.5.2, the multi-factor interaction (MFT)
model is described, and a formulation for the probabilistic modeling of an austenitic stainless steel is
presented in Section 3.5.3. A model for defining a random stress-strain curve in NESSUS/FEM is
described in Section 3.6, and several demonstration problems are presented in Section 3.7.

3.3 Approach to Structural Reliability Computation Using NESSUS

The reliability of a structure can be viewed as a measure of the ability of the structure to perform
as designed. However, because uncertainties in the design process are unavoidable, a probabilistic
approach to estimating the chance of non-performance is needed. Probably the simplest statement of
performance for a structure is that the available strength of the structure be adequate to withstand the
maximum loads acting on the structure. This performance can be stated mathematically [1] as



ps=P(S-Rs0) 3.1

where p; is the probability of safety (reliability), S is the loading or "stress" variable associated with
the structure, and R is the strength or "resistance” measure of the structure. In general, most structures
will be required to meet more complex performance measures.

The probabilistic analysis methods used in NESSUS are based on the concept of a limit-state 2].
A limit-state function g(X) is formulated in terms of the input random (i.e., engineering) variables, X.
The limit-state function, also referred to as the performance function, is written such that g (X) = 0 defines
the boundary between the "failure" and "safe” regions. In other words, g(X) < 0 indicates failure and
g(X) >0 indicates safety.

To describe the new approach, it is useful to review the methodology used in the earlier versions
of NESSUS (i.e., < 4.8). Previously, a structural response function Z = Z(X) was defined either by a
numerical method such as NESSUS/FEM or by a closed-form expression. In a probabilistic structural
response analysis, the performance function was formulated as g(X)=Z(X)~Z,=0, where Z, can be
thought of as a limiting value of Z. Point probability estimates are made using specific limits for Z,
and the cumulative distribution function (CDF) is obtained by varying Z,

The approach for defining more general performance functions in NESSUS is straightforward.
Instead of interpreting Z = Z(X) as being solely the structural response, its definition is extended to
include the effects of both the response and material/resistance model. Specifically, Z(X) is formulated
to represent the overall response function. In a component structural reliability analysis, Z(X) will be
a function to predict a particular failure mode. Note that the probabilistic structural response analysis
available in previous versions of NESSUS is a subset of this approach.

3.4 Code Structure

NESSUS/PFEM, as in past versions of NESSUS, is the main driver routine in NESSUS 5.0. The
input format for PFEM in NESSUS 5.0 has been completely rewritten to be more organized and
user-friendly. In particular, all input is now column and case independent and is completely keyword
driven. A number of new keywords have been added reflecting new code capabilities. Appendix A
gives a detailed presentation of the NESSUS 5.0 code structure.

3.5 Combined Stress and Resistance Modeling

Material/resistance modeling capabilities have been researched and implemented in the NESSUS
Software System and are grouped as follows: (1) state-of-the-art (SOA) models, (2) a multi-factor
interaction relation, and (3) a probabilistic constitutive relationship. All of the models are integrated
with the automated Advanced Mean Value Iteration (AMV+) algorithms described in Chapter 2.
Resistance Model Research

Measures of structural resistance vary from analysis to analysis. Consequently, it would be
inefficient to implement a large number of resistance models. The approach taken in this task was to
(1) develop a code structure that offered the flexibility of defining resistance models through
user-programmable routines and (2) include a broad cross-section of "pre-coded" widely used resistance
models that could be used both for design purposes and as examples for the engineer to use in defining
more specific resistance models.

10



A considerable portion of time was devoted to surveying the different types of resistance measures
that would be most applicable to the space propulsion industry needs. Southwest Research Institute,
The University of Arizona, and Rocketdyne all participated in this research. By performing this research
early in the fiscal year, the types of data were identified, and were subsequently used in the design of
the new PFEM code.

A database of resistance models was compiled as a result of an extensive review of classical
resistance measures (University of Arizona Report, Appendix B.1) and resistance models currently
being used in the liquid rocket engine industry (Rocketdyne Report, Appendix B.2). A summary table
of the more commonly used measures of resistance is given in Table 3.1. The reader is referred to the
respective appendix for complete details.

The models listed in Appendix B.1 are grouped into the following categories:

» Stress-Based Fatigue Life Prediction Models

o Strain-Based Fatigue Life Prediction Models

+ Fracture Mechanics Crack Growth Models

» High Temperature Low Cycle Fatigue Models

¢ Linear Elastic Fracture Mechanics Resistance Models
« Fatigue and Creep Resistance Models

Within each category, a number of models are presented along with a discussion of modeling
approaches, statistical input considerations, and reliability analysis recommendations. As a result, it
should be a straightforward task to incorporate a model, or some variation, from this database into the
NESSUS 5.0 user-programmable routines.

3.5.1 State-of-the-Art Models

The NESSUS state-of-the-art material/resistance models are categorized into three groups: (i)

design factor models, (/i) material strength models, and (iii) material degradation models.

1
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3.5.1.1 Design Factor Models

Design factor models are traditional structural design factors, or more simply, limiting conditions.
(A probabilistic analysis using a non-random design factor would be termed a probabilistic structural
response analysis, described earlier in Section 1.3.) Example design factors include deflections, natural
frequencies, and stresses. In NESSUS 5.0, design factors themselves can be random functions, and
could be thought of as the resistance curve.

3.5.1.2 Material Strength Models
Material strength models model the uncertainty associated with the ability of the material to "resist"
its loading. Typical material strength measures include yield stress, fracture toughness, and elongation.

3.5.1.3 Material Damage Models

Material damage models attempt to consider the effects of cumulative material damage and may
or may not affect the structural response, the choice being dependent on the particular model used.
Examples of material damage models include low cycle and thermomechanical fatigue, crack growth,
and stress corrosion.

3.5.2 Multi-Factor Interaction Relation

The Multi-Factor Interaction (MFI) relation [3,4] models material degradation by using a series
product equation fitted to experimental or assumed data. A single term is used to describe each primitive
variable (stress, temperature, cycles, etc. ). The general form of the MFI relation is

M, s Ap-A )"
M, ~ E(A,,-A,,) G2

where A;, A;, and A, are the ultimate, current, and reference values of a primitive variable, g, is the

value of an empirical constant for the i* primitive variable, n is the number of primitive variables
considered, and M, and M, are the current and reference values of the material property. As seen, the

effect of each primitive variable on the current material property varies from 1.0 (no effect on strength)
to 0.0 (complete loss of strength) times the reference value of the material property.

3.5.3 Probabilistic Constitutive Relation

The goal of this research was to develop simplified relations to describe probabilistic material
behavior in terms of micromechanical parameters. Although this approach is more difficult to formulate
than the macromechanical formulations discussed earlier and is material dependent, it can provide
valuable information regarding what drives basic randomness in material properties and behavior.

A formulation for the probabilistic behavior of a polycrystalline austenitic stainless steel has been
formulated. A complete description is given in Appendix B.3. In this presentation, the modeling and
behavior of the austenitic stainless steel is broken down into (1) uniaxial stress-strain behavior, (2) low
cycle fatigue response, (3) high cycle fatigue response, (4) crack growth behavior, and (5) creep rupture
behavior. Within each category, the basic behavioris developed in terms of micromechanical parameters
such as grain size, constituents, and porosity. Recommendations are also made for the selection of
random variables.
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3.6 Random Stress-Strain Curve Model

An important capability was implemented in NESSUS for modeling the scatter found in most
stress-strain curve data. The stress-strain curve model is expressed as a function of seven (random)
engineering parameters: Young’s modulus, yield stress, initial plastic hardening slope, ultimate stress,
strain at ultimate, Poisson’s ratio, and a parameter governing “mixed" hardening. These parameters are
in general correlated and non-normally distributed. A method has been formulated and coded into
NESSUS to perturb consistently the stress-strain curve inputs to NESSUS/FEM. A detailed discussion
of this model along with an example problem is presented in Appendix B.4.

3.7 Demonstration Problems

To demonstrate the new capabilities offered in NESSUS 5.0, several demonstration problems are
presented. 'Here, only a summary of each problem is given, with details given in Appendix C. The
summary includes a discussion of the options used, which particular resistance model is employed, and
any special features that are exercised. In all cases, the automated AMV+algorithms are used. Moreover,
each problem is executed to completion with a single computer run and input deck.
3.7.1 Displacement Response of a Tilted Beam

In this demonstration, the response is the displacement interference between the tip displacement
§ of a beam, tilted at a 30° angle from the x-axis, and a displacement limit &, which has some uncertainty
associated with it. This problem provides a demonstration of a simple design factor model (Section
3.7.1), where the end response of the beam is the "stress" variable, and the (uncertain) limiting response
is the "resistance” variable. Another important aspect exercised in this problem is the transformation
of displacements into another coordinate system during the course of the analysis. A complete write-up
is provided in Appendix C.1.

3.7.2 Buckling Example

This example demonstrates the computation of structural reliability with respect to buckling limits.
The solution procedure is similar to that described in Section 3.7.1. A complete write-up is provided
in Appendix C.2.

3.7.3 Stress Response of a Circular Disk

Here, a circular disk is analyzed with two equal and opposite forces P acting along a diameter.
Failure is assumed when the maximum compressive stress, 6, due to the loads exceeds some limiting
stress G,. Therefore, the probability of failure is given by P,= P[0, < c]. Once P, is computed, the
reliability is computed as 1-P,. This is a demonstration of a material strength resistance model (Section
3.5.1.2), where o, is the uncertain failure or yield stress. A complete write-up is presented in Appendix
Ca3.

3.7.4 Fatigue Life of a Three Point Bend Specimen

In this demonstration, the reliability of a three point bend specimen against failure by fracture is
computed. Failure is assumed when the computed number of cycles to failure N, is less than the design
life N, where N, is computed using a simple Paris relation to describe the crack growth. This
demonstration problem provides an example of a material damage resistance model (Section 3.5.1.3).



Anotherimportant aspect demonstrated in this problem is the use of both "FEM" and "non-FEM" random
variables, respectively termed "computational” and "explicit,” in NESSUS. (See the NESSUS 5.0
Release Notes in Appendix A for a more detailed explanation.) Examples of computational random
variables include the loading and beam dimensions. Examples of explicit random variables include the
initial crack length and the Paris exponent. A complete write-up is presented in Appendix C.4.

3.7.5 Elastoplastic Low Cycle Fatigue Life of a Rectangular Plate

Here, the probabilistic life of a rectangular plate is analyzed considering damage caused by low
cycle fatigue. The Multi-Factor Interaction (MFI) relation is used in the analysis to degrade the initial
yield stress as a function of the thermal fatigue cycles and temperature. Important aspects in the
demonstration include (1) the use of both computational and explicit random variables to construct the
performance function (in this case, N,), (2) the automatic processing of 50 increments of stress and
plastic strain to compute mean stress and plastic strain range, (3) the use of COEFFICIENT random
variables in NESSUS/FEM to track the random parameters in the MFI model, and (4) the inclusion of
material damage during the course of the finite element calculations via the MFI relation. A complete
write-up is presented in Appendix C.5.
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4 COMPONENT RISK

A risk module has been added to NESSUS, called NESSUS/RISK, which will compute the risk
with respect to cost, performance and a user-defined criteria. RISK can be run stand-alone or in
conjunction with PFEM. Analysis with PFEM is fully automated from a single input file.

4.1 Cost Algorithm
Risk with respect to cost is computed using the formula
Risk/Cost = Co(x) + Py(x) * C(x) + (1-Py)*NC(x)
where x is the allowable response in a reliability analysis such as stress, displacement, cycles to failure,
C, is the initial cost as a function of x, Py is the probability of failure as a function of x, and NC(x) is
the probability of non-failure as a function of x. The P(x) curve may be the CDF computed by NESSUS.
However, in general, x could be any design parameters including non-random variables.

The four functions, P{x), Co(x), C(x), and NC(x), are defined with appropriate keywords defined
below. The failure function, P{x), is defined in table form using the *XPF keyword. The three cost
functions, Cy(x), C(x), and NC(x) are defined using the *CFUNC keyword. The XPF and CFUNC x
values do not have to coincide. The output points, x;, at which the risk is to be computed are defined
with the *XCOUT keyword. The output points do not have to coincide with the failure function or cost
function points. RISK will linearly interpolate the failure function and cost function values to use in
the equation for risk. However, no extrapolation is allowed; therefore, the output points must lie within
the failure function and cost function data.

Example:

The user has computed a P; function which is the probability of failure of a structure as a function
of a member area, A. Thus, x is the member area A. (Note, in this example, x is not a response.) The
initial costs are assumed to vary linearly with A. The cost of a failure is assumed to be independent of
A, thus, the cost function, is assumed to be constant with A. The cost of non-failure is also assumed to
be constant with A although at a far less magnitude than the cost of failure function. The user desires
the risk at a number of points between the areas 0.1 and 1.0.

The input file would look like:
*RISK to run risk stand-alone, start file with *RISK
o] comments are allowed
o]
o] define the probability of failure function
c five points will be used
*XPF
*TABL 5 indenting is allowed
0.05 .999
0.3 .980
0.5 .950
0.7 .925
1.0 9
*END
o4
o] define cost functions



c three points will be used

*COST

*CFUNC 3

0.1 2.0 50. 1.0

0.5 3.11 50. 1.0

1.0 4.0 50. 1.0

*END

C

o] define the output points
(o} (areas for which risk is to be computed)
c ten points are used
*XCOUT 10

.1

H OOO0OCOoOO0OQ0CO OO
. . . ¢ o e e
O W o oW & WN

g’ .

end risk file

(9]

*END

4.2 Performance

A second analysis method in RISK is based on performance. In this approach, the risk with
respect to performance is adjusted by changing the primitive random variables to meet a user-specified
probability of failure at user-specified design values x. This is, in essence, part of the design process.

The input requirements are the P, function, which can be computed automatically by PFEM, the
random variables statistics and probabilistic sensitivities, and the design requirements. The P, function
is input with the *XPF keyword as before. The random variable statistics and probabilistic sensitivities
are input with the *RVDEFINE keyword. The design requirements are input under the
*PERFORMANCE keyword by using the *DREQ and *DV AR keywords. NESSUS/RISK will compute
the necessary changes in the random variable means and standard deviations needed to meet the
requirements. Each random variable will be adjusted independent of the others, and the mean and
standard deviation are adjusted independently.

The algorithms used in RISK are described in Appendix C (by T. Torng and H. Millwater) of the
October 1990 PSAM monthly report.
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Assumptions:

The user should be aware of the assumptions involved in the implemented algorithms. First, for
nonlinear functions and non-normal distributions, the computed design changes are only a first order
estimate. An iterative process is needed for an accurate solution as outlined in the technical write-up.
Secondly, the probabilistic sensitivities are assumed constant, whereas, in general they will vary over
the range on the failure function. It is assumed that when utilizing RISK/Performance the user will be
focusing on a specific area of the failure function, e.g. left tail, and the probabilistic sensitivities will
be approximately constant. Thirdly, the technical write-up details an algorithm for a variety of
non-normal distributions. In this version of NESSUS/RISK, a normal distribution is assumed for all

random variables.
Example:

This problem has two random variables, x,, x, with statistics

= 25.
ul = 10.

o, =4. normal distribution
0, =3. normal distribution

and probabilistic sensitivity factors

o, =-0.8

o, =0.6

The failure function is defined by two points in the left tail,

x=1
x=2

P, = 1.35E-3
P{ = 0.1

The design requirements are:

P,=233E4atx=1
and
P,=.00latx=1.5

Both the mean and standard deviation will be changed independently to meet the design requirements

if needed.

The input file would look like:

*RISK

*PERFORMANCE
*DREQ 2 two points are requested 1.0 2.33E-4
2.0 0.001

C

o] both mean and sigma to be varied
*DVAR BOTH

*END

C

*XPF same are for cost
*TABLE 2 two points
1.0 1.35E-3
2.0 0.1

*END
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define random variables

O0a0n

note: presently all ran vars assumed normal
*RVDEF INE
*DEFINE 1
25. 4. NORMAL
-0.8
*DEF INE 2
10. 3. WEIBULL

0.6
*END
C
c end risk input
*END

4.3 USER-Defined Risk Criteria

An option for a user-defined criteria for risk is provided through a user-written subroutine,
USRRSK. The probability of failure function and the random variable statistics can be used with this
option.

4.4 SSME Risk Research
Rocketdyne performed a risk and cost model survey of SSME hardware. The report is enclosed
in Appendix D.
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5 SUPPORTING TECHNOLOGY
5.1 FPI Enhancements

To support accurate and fast structural reliability analysis, an improved fast probability analysis
method was developed. This improved method combines the fast probability integration concept, the
convolution theorem, and the fast Fourier transform technique. The general procedure of this fast
convolution method (FCM) consists of the following steps: (1) identify the most probable point of a
limit state, (2) establish a quadratic surface around the most probable point, (3) transform the quadratic
surface to a linear surface, and (4) apply a fast Fourier transform technique to provide a fast convolution
solution. Detailed discussions of this methodology and test examples are contained in Appendix E.

The method can solve previously encountered numerical problems associated with highly
non-normal distributions or very large coefficient-of-variation distributions. Also, the method is more
accurate than the previous fast probability integration (FPI) method. The following example represents
one of the problems for which the normal transformation distorts the original limit state (in the X-space)
drastically such that the limit state cannot be well-approximated by a second-degree polynomial in the
transformed u-space. As a result, the standard first-order reliability method (FORM) and the
second-order reliability method (SORM) may produce significant errors.
Example:

The g-function is:

g = R-S§
where
R ~ Lognormal (mean = 20; Cov = 0.25)

and S has a bi-modal PDF defined as:

- Lo I Lo I
£i5) = (0.99) o[ s, )+(0.01) o( 5 ]

(p'u [+ 209 % 01) = (101 2r 40’ 2)

The reliability analysis results are summarized in the Table 5.1. Figure 5.1 shows the exact limit
state and the full second-order approximation in the u-space. The FCM (X-space) method produces
near exact solution because the g-function is linear. The results suggest that the g-function in the u-space
cannot be adequately approximated by a quadratic function because of the nonlinear normal
transformation.

where
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Table 5.1
Reliability Resuits

1 | ,
[ Method | FORM | Previous | | FcM | FoM | Exac? |
‘\ J | Method' i } u-space | X-space | |

Probability 1.567e-2 | Numerical | 1.517e-2 2.347¢-2 2.307e-2

! Advanced first-order FPI method
? Based on formula developed by Breitung (see Appendix E)
* Based on importance sampling method

10.0 ;
,"Approximate g
—
5.0 -
0.0
-5.0 -
-10.0 T T
-10.0 -5.0 0.0 5.0 10.
Up

Figure 5.1 Illustration of Exact and Approximate Limit States
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§.2 Nessus/Probabilistic Boundary Element Method
A probabilistic boundary element method program, PBEM, has been developed as an alternative

to finite elements. PBEM is based on a simple perturbation interface for the BEST3D, version 3,

boundary element program. This interface allows the userto define structural random variables, compute

sensitivities, and perform advanced mean value updates, i.c., "Moves." The automated coupling with

FPI has not been developed, but the concepts are shown here. A simple example problem using PBEM

has been successfully completed. The input format for PBEM is covered in detail in Appendix F.
The tasks completed include a complete BEM perturbation analysis capability using version 3.0

of BEST3D. The development of an automatic perturbation database capability will be completed in

FY’91. In essence, the tasks completed are as follows:

a) The new version of BEST3D has been incorporated with an interface for performing the
perturbation analysis for all types of the deterministic problems BEST3D can handle. This part
of the program is called PBEM.

b) The automated moving of the design points for advanced mean value method can be performed
using the module MOV. This is not completely automated in the sense the FPI data deck of the
perturbed solutions has to be separately defined. However, this ability to move the design points
automatically using MOV helps in saving considerable time and manual interaction.

¢) The existing program modules are sufficient to perform all types of probability analysis for which
a deterministic analysis can be performed using BEST3D. An example involving a cantilever
beam has been successfully completed.

The present version of PBEM is compatible with the current version of PFEM. However, a module
for automatic FPI database development and tying it with PBEM and MOV is required. It is expected
that these tasks will be completed in the next fiscal year.

As described below, a cantilever beam under tip load has been solved successfully, using the new
version of PBEM. Note that the present version of PBEM can also be used to perform probabilistic
analysis of nonlinear, dynamic, and heat transfer problems.

VALIDATION PROBLEM

Cantilever B Under a Tip Load

The problem under consideration is static, and the PBEM is used to get the perturbed solution.
The model uses 28, 8-noded isoparametric quadrilateral boundary elements. The dimension of the beam
and the loading conditions are as shown in the Figure 5.2, and the details of the random variables are
givenin Table 5.2. The tip displacement of the cantilever beam is the response variable. The cumulative
distribution function of the tip displacement is shown in Figure 5.3 and compares well with the exact
solution from Monte Carlo. The CDF shown in Figure 5.3 is only for the static analysis; however, all
other problems involving dynamic, thermal, and inelasticity could similarly be determined.
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Table 5.2
Total Number of Random Variables = 4

Distribution

Distributed Load 10.0 psi

Young’s Modulus 3.0E + 6 psi
Length of the Beam 0.8 in.
Depth of the Beam .0 in. 0.4in.

or
2P0 _6PL 4pD
Etd® Etd® E:d®

where
w = Uniformly distributed load
E = Young’s modulus
v = Poisson’s ratio
t = Thickness of the beam
d Depth of the beam

1 - Length of the beam
For the present data, the tip displacement for the beam shown in Figure 5.1 is = 0.003143 inches, which

is 0.98 x (displacement from BEM). As a result, the beam solutions are calibrated using a factor of
0.98.
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Table 5.3
Tip Displacement (Z direction, in inches)
Due to Deterministic Solution and Perturbation Solution

Deterministic solution 0.34829¢-02

Perturbed solution:
"()" is number of standard
deviations

Load perturbation.(1) 0.35178e-02
Material (E) perturbation.(1) 0.24484¢-02
Depth perturbation.(0.1) 0.34763¢-02
Length perturbation.(0.1) 0.34879¢-02
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5.3 Expert System

The Expert system was updated to include help screens for probabilistic options such as perturbation
size, convergence criteria, analysis type, analysis method, g function, and confidence intervals. The
help screen for perturbation sizing and convergence criteria is shown below. The help screens for other
options are contained in Appendix G.

Vanderbilt University has been working on defining a new interface to NESSUS called
NESSUS/SHELL. SHELL is a graphics-oriented, menu-driven system that will assist the userin defining
a probabilistic input given deterministic input. A preliminary write-up for SHELL is given in Appendix
H. '

HELP SCREEN FOR PERTURBATION SIZING

*PERT

This keyword is used to determine the amount by which random variable(s) will
be perturbed. The purpose of this procedure is to determine the response
sensitivities. NESSUS uses a iterative perturbation algorithm to compute the
response sensitivities; therefore, this option is closely tied with the convergence
criteria on the *ITER card.

Several considerations should be kept in mind when using this option:

1) a "small"” perturbation will give a better estimate of the local
sensitivities.

ii) the perturbation should not be so small that numerical noise washes out
the effect of the perturbation.

iii) smaller perturbations will converge quicker.

iv) too large a perturbation may result in nonconvergence of the algorithm.

Perturbation Sizing

As a starting point, we recommend a perturbation size of 0.1 * the random variable
standard deviation with a relative error convergence criteria on the *ITER card
of 0.005. This choice depends on the random variable standard deviation, and
for problems with high coefficient of variation, the user may want to choose a
perturbation of approximately .1 percent of the random variable mean.

The appropriate perturbation size is of course problem dependent but some
generalizations can be made. Note, however, experience is the best guide!!!

Perturbations containing loads make no difference as loads affect only the
right-hand side and convergence will be achieved in 1 iteration.

The structure is oftentimes fairly sensitive to geometric parameters such as

length, thickness, etc. Thus, perturbations with respect to geometric random
variables may need to be relatively small.
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In general, if the user is aware that the structural response is sensitive to
the random variable to be perturbed then the perturbation used may need to be
relatively small.

The user should always check the sensitivities which are computed to see if they
make sense, i.e., is the sign correct? Is the magnitude in comparison with other
random variables sensitivities what one would expect?

Theoretically, the size of the perturbation should not affect the CDF results.
The perturbations should be small enough to pick up accurately the local
sensitivities, but not too small such that the sensitivities get lost in numerical
noise.

Guideline of Random variable sensitivities

RHS affects only. Perturbation sizes and convergence criteria have no effect.
Force

Prassure

Distributed load

Initial conditions. May be very sensitive to random variable perturbations.
Acceleration

Displacement

Velocity

Geometric effects. May be very sensitive to random variable perturbations.
Coordinates
Beamsections

Material properties. Most likely average sensitivity. Often, these random
variables are often the more significant random variables.

Properties

Orientation

Damping - may have high sensitivity

Yield Function

Temperature - effects temperature dependent materials

Stiffness affects. Most likely average sensitivity.
Springs

Random vibration/Harmonic Excitation. Some affect RHS only, others will affect
the stiffness matrix.
PSD - Changes in PSD magnitude and shape will affect the RHS only; therefore,

the perturbation sizes and convergence criteria will have no effect.

Harmonic - changes in amplitude should affect RHS only. Changes in frequency
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will have a nonlinear effect with most likely average sensitivity.

*ITER

This option is used for defining convergence criteria with respect to the
mixed-iterative formulation, material or geometric nonlinearities and the
perturbation algorithm,

With regards to the perturbation algorithm, the maximum allowable relative error
in the residual is most often used. The other criteria are often left blank.
As a starting point, the maximum allowable relative error is recommended toc be
0.001 to 0.005 . Good results have been achieved with 4 to S iterations in the
perturbation algorithm. If convergence is not achieved within 4 to 5 iterations
the user should probably reduce the perturbation size. A good upper bound for
the maximum number of iterations is 10.

The user should always check the sensitivity results carefully!
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DRAFT

1.0 Introduction

This document contains instructions on using version 5.0 of NESSUS and supercedes previous
NESSUS manuals.

A significant number of new features have been added in version 5.0 of NESSUS. Each of
the items listed below is discussed further in the following sections.

. Automated solution procedures

i) The Advanced Mean Value iteration (AMV+) algorithm (PLEVELS) is implemented
in its entirety and automated within NESSUS.

ii) An AMY based reliability algorithm (ZLEVELS) is implemented in its entirety and
automated within NESSUS.

. Improved input format
. Combined stress and resistance models

. Post-processing of FEM results such as load combination rules, principal stresses, coordinate
transformations, maximums and minimums available with NESSUS.

. Coefficient random variables implemented into NESSUS/FEM.  _
. Risk module which computes risk with respect to cost, performance and a user-defined criteria.

. User-defined hooks to allow the user to define a new material resistance model, post-process
FEM results, etc.

Automated solution procedures

Two different AMV+ algorithms have been developed and implemented in NESSUS. One
algorithm is used when the probability is prescribed and the corresponding response value z is to
be computed. This algorithm is termed the AMV+ p-level procedure. NESSUS 5.0 performs
automated iterations until a user-specified tolerance is reached.

The other algorithm, which is new to version 3.0, is used when the z value is prescribed and
the corresponding probability is to be computed, and is termed the AMV + z-level procedure. Again,
iteration is automatic until a user-specified tolerance is reached. A summary of both algorithms is
given below.

AMV+ p-level Procedure
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DRAFT

The AMV+ p-level procedure is used to compute the response corresponding to a specified
probability, or p-level. In NESSUS, the method is used when points along the entire range of the
CDF are to be computed or the response at specified probability levels is to be computed. This
procedure is selected by setting *ANALTYPE = 0 or 2 in the FPI input section of PFEM.

Table 1 gives a schematic of the method, along with the number of finite element solutions
that are required to perform a first order probabilistic analysis. In Table 1, N is the number of input
random variables and M is the number of p-levels. MVFO refers to "mean value first order," and
AMVEFO refers to "advanced” MVFO. In an MVFO analysis, (N+1) sensitivities are computed and
used to construct a linear performance function (g-function) about the mean values of the random
variables. In step 2, an update (or "move") is performed which entails a finite element solution to
update the response value at each of the M probability levels.

Tabie 1. Schematic of AMV+ p-levels Procedure

Number of Finite
Iteration | Step Analysis Element Solutions
0 1 MVFO N+1
0 2 AMVFO (Move) +M
1 1 First Order +(N+DxM
1 2 Move +M
2 1 First Order +(N+1)xM
2 2 Move +M

A fully automated AMV+ p-level algorithm has been implemented in NESSUS. The user
inputs an allowable number of iteration and a convergence tolerance. At each p-level, NESSUS
continues iteration until either i) the allowable number of iterations is reached, or ii) the relative
change in z is within the convergence tolerance.
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AMV+ z-]evel Procedure
The AMV+ z-level procedure is used to compute the probability corresponding to a specified

response or z-level. In NESSUS, the method is primarily used for reliability calculations, where p
must be calculated for a specific value of z.

The key to efficient reliability analysis is the ability to compute quickly the location of the
most probable point (MPP). To reduce the number of finite element solutions required while
searching for the MPP, an algorithm has been devised and implemented to estimate a good starting
MPP. Once the estimate is obtained, a straightforward iteration procedure is used to converge on
the desired MPP. It should be noted that the sole purpose of the algorithm used to obtain the starting
MPP is to minimize the number of finite element solutions, and can be modified or adapted as
experience warrants.

The AMV+ z-level procedure works in "u-space,” which is related to p by 2p = 1 + erf(u /15),
and "erf” is the error function. An outline of the AMV+ z-level procedure is given below:

A. Compute an initial estimate for the most probable point.

1. Estimate the probability level u using u =az?+bx +c, where a, b, and ¢ are determined
from:

i) u at the mean value of z,
if) du/dz at the mean value of z, and _
iif) the AMYV result (move) at u = +5 or -5, depending on whether the
z-level is greater than or less than its median, respectively.

2. From the probability level u computed in Step A-1, compute the MPP using FPI and the
response using a move (AMV procedure).

3. Compute a new estimate of the probability level 4 using u =az*+ bx +c, where a, b, and ¢
are determined from:

i) u at the mean value of z,
if) u at the MPP obtained in Step A-2, and
iii) the AMYV result (move) at u = +5 or -5, depending on whether the
z-level is greater than or less than its median, respectively.

4. From the probability level u computed in Step A-3. compute the starting MPP using FPL.
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B. Given a starting 4 and MPP:

i) obtain sensitivities at the MPP, and
if) estimate an improved u and MPP for the input z-level using FPL

C. Repeat step B until either:

i) the allowable number of iterations is reached or
if) the relative change in u is less than the convergence tolerance.

Improved Input Format

The input format for PFEM of NESSUS 5.0 is similar to that of version 4.2, but is expanded
and more user-friendly. In particular, the input is now column and case independent. A number
of new key words have been added reflecting new code capabilities.

Combined Stress and Resistance Models

A significant new feature of NESSUS 5.0 is the ability to compute the probabilistic response
of general functions that are a combination of finite clement quantities and material resistance. This
is done by computing sensitivities with respect to load, material properties, etc., of the combined

response.

A very flexible framework is provided for user-defined response functions. 'Some examples
which can be easily programmed include: Campbell diagram, high/low cycle fatigue models, and
fracture models.

Post-processing of FEM Results

In many cases, the user wishes to manipulate the FEM results prior to probabilistic analysis.
Examples may be to implement load combination rules, principal stresses, coordinate
transformations, maximums and minimums. This can now be done easily in NESSUS 5.0. A library
of pre-programmed functions is included in NESSUS 5.0. In addition, the user can program his
own transformations through user-defined subroutines.

Coefficient Random Variables Developed within NESSUS/FEM

A new type of random variable labeled "COEF" for coefficient has been added to
NESSUS/FEM. This random variable will be perturbed the same as other random variables in
FEM: however, it has no direct effect on the structure, but does get passed into the user-defined
material routines. Thus, constants such as the material power coefficient can be considered random
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and passed into the material routines. The COEF random variables will provide a mechanism
whereby the material can be degraded as a result of the structural response. COEF should be useful
for creep, random stress-strain curves, fatigue, and any material models.

NESSUS/RISK

A risk module has been added to NESSUS, called NESSUS/RISK, which will compute the
risk with respect to cost, performance, and a user-defined criteria. A summary of the algorithms is
givenbelow. More information, including example problems and inputkeywords, is given in section
5.

COST

Risk with respect to cost is computed using the formula
Risk/Cost = Cy(x) + P(x) * C(x) + (1-P)*NC(x)

where x is the allowable response in a reliability analysis such as stress, displacement, cycles to
failure; C, is the initial cost as a function of x; P, is the probability of failure as a function of x; and
NC(x) is the probability of nonfailure as a function of x. The P(x) curve may be the CDF computed
by NESSUS; however, in general, x can be any design parameter including non-random variables.

PERFORMANCE

A second analysis method in RISK is based on performance. In this approach, the risk with
respect to performance is adjusted by changing the primitive random variables to meet a
user-specified probability of failure at user specified design values x. This is in essence part of the
design process.

The input requirements are: the probability of failure function, P,, the random variable statistics
and probabilistic sensitivities and the design requirements. NESSUS/RISK will compute the
necessary changes in the random variable means and standard deviations needed to meet the
requirements. Each random variable will be adjusted independent of the others, and the mean and
standard deviation are adjusted independently.

USER

An option for a user-defined criteria for risk is provided through a user-written subroutine,
USRRSK. The probability of failure function and the random variable statistics can be used with
this option.
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RISK can be run stand-alone or in conjunction with PFEM. Analysis with PFEM is fully
automated from a single input file.

New Files

The user will notice three new files in NESSUS 5.0. jobname . 2DB2 contains the finite element
sensitivities at most probable points, whereas jobname . PDB contains sensitivities around the mean.

jobname . PDB2 is a scratch file used for the automated AMV+ algorithm. The user should have no

need for this file.

The second file is the probabilistic storage file jobname.psr. This file will store the
probabilistic results; however, it is not operational for NESSUS 5.0.

The third file is the risk input file jobname . rsk, and is created by NESSUS when performing
a risk computation within a PFEM analysis.
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2.0 Summary of Changes from Version 4.2

This section describes overall changes to the NESSUS code from the previous 4.2 release.
The new features and enhancements present in version 5.0 have been implemented in the
NESSUS/PFEM module and the newly created RISK module.

Stand-alone operation of both the NESSUS/FEM and NESSUS/FPI modules is identical to
that in previous versions with the following exceptions:

1. The NESSUS/FPI input is now column independent.
2. A new random variable type (COEF) has been added to NESSUS/FEM.

NESSUS/FEM Users Manual update pages are included in Appendix A for the new COEF random
variables. The purpose of these new random variables will be discussed later in this document.

Specific new capabilities incorporated in NESSUS 5.0 include:

1. afully automated iteration algorithm using the AMV+ procedure to obtain either
(¥) the response at a given probability or (ii) the probability at a given response,
both to within a user-specified tolerance;

2. a very general capability for analyzing complex performance functions by
combining both load and material/resistance variables; and

3. a capability whereby the material properties may be degraded as a function of
stochastic load and material/resistance variables during the course of the finite
element calculations, and

4. a risk module that will compute the risk with respect to cost and performance.
Risk can be run stand-alone or with a PFEM analysis.

The structure of the new NESSUS/PFEM input deck is shown below. The input is divided
into four major sections:

1. probabilistic analysis input,

2. finite element analysis input,

3. fast probability integration input, and
4. risk analysis input.

Sections 1-3 are required input for a PFEM analysis. Section 4 is optional and is only required
when running a risk analysis with PFEM.
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*PFEM
Probabilistic Analysis Input
*END
*FEM
FE Analysis Input
*END
*FPI
FPI Analysis Input
*END
*RISK
Risk Analysis Input (optional)
*END

NESSUS/PFEM Input Structure

Note that each major input section ends with a *END keyword card.

When coupled via a PFEM analysis, the input decks for NESSUS/FEM and NESSUS/FPI
codes are only slightly changed from their stand-alone versions; random variable definitions
(*pEFINE and *pERT cards in FEM and *DEFRANVR in FPI) are now input in the probabilistic analysis
input section, *PFEM. Also, NESSUS/FP! input is now read in column-independent format. These
changes will reduce errors and the possible ambiguity that can result when multiple definitions of
the same random variable are given in the same input deck. The random variable input cards also
now accept an 8-character arbitrary name for each random variable.

To describe thé approach used in NESSUS 5.0 to allow general reliability analysis, it is useful
to review the methodology used in the earlier versions of NESSUS. Previously, a structural response
function Z = Z(X) was defined either by a numerical method such as NESSUS/FEM or by a closed
form expression. In a probabilistic structural response analysis, the basic capability of version 4.2,
the performance function was formulated as g(X) = (Z(X) S Z,), where Z, can be thought of as a

limiting value of Z. From this, it can be seen that the performance function is g(X) = Z2(X) = Z, = 0.
Point probability estimates were made using specific limits for Z,, and the cumulative probability
distribution function (CDF) was obtained by simply varying Z, and repeating the analysis.
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To define reliability (as opposed to structural response) requires a more general definition of
the performance function. The approach used to accomplish this in NESSUS is straightforward.
Instead of interpreting Z = Z(X) as being solely the structural response, its definition is extended
to include the effects of both the response and material/resistance model. Specifically, Z(X) is
formulated to represent the overall response function. For a structural reliability analysis, Z(X)
will be a function to predict a particular failure mode. (Note that the probabilistic structural response
analysis version 4.2, is a subset of the capabilities in NESSUS 5.0.)

A very general framework has been implemented in NESSUS 5.0 for defining performance
functions. Work is currently underway to code in a library of response functions, and user
programmable subroutines have been provided to allow "home grown" performance functions to
be defined.

In summary, the performance function in version 4.2 could be either a structural response
(finite element) or a closed-form response (PAAM). In version 5.0, the response can be a
combination of structural response and closed form. Thus, material resistance models can be coupled
with the structural response for reliability calculations.

A risk module, as mentioned in the introduction, has been implemented into NESSUS 5.0.
The risk module can be run within a PFEM analysis. The input for the RISK module, see section
5, is the same as when RISK is run stand-alone, except the probability of failure function is supplied
by PFEM. The probability of failure function is essentially the CDF computed by PFEM.
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3.0 NESSUS/PFEM Input
The probabilistic analysis section (*eFEM) is divided into four major input sections:

z-function definition (*ZFpErINE) input,

random variable definition (*RVDEFINE) input,

mean value analysis definition (*MvDEFINE) input, and
advanced mean value analysis definition (*AMVDEFINE) input.

BWN-

The order of input of each section is arbitrary. To summarize, the *2rpEFINE input block
contains the input necessary for defining the response function and for including resistance variables
in the probabilistic analysis. The *rvDEFINE input block contains the random variable definitions.
The *MvDEFINE and *AMVDEFINE input blocks define the mean value and advanced mean value

analyses, respectively.



(u)agyys (u)aend(

(S)azyye o) vend(
(T)3zyye (7) veadf
red{ gia01L433

' yoeyqeaep
. ed/l
e3Iep UCTINQIIAFTP
aN3 ¢ AP ABpE uvew
anduy 134/50883AN eweusa
Idds wnuLI Y AN1.339¢
aNads ANTIFDAT Y
anduy W33/snssAR M3y
W3as NI AWIAT O
aN3 x i3
aN3x HOILY43d0
(neN) NOIIVMALIx bLUETTES € SN D P B Lt
WYVds Jeooou adoy NoIlV4AL
aNZ3s (g)Bbue  (g)Fpuv(
FAOHs (T)bue () ryuv(
YAV (Dbhue  (p)ryur(
LNINOIHOD» uex3If NOIIVWIOJISHVLL
FAONx dwoou ‘{=y ! (1) dwon(
(WIVHs ‘3C0Rx ‘4ONIx seowyded) NOILIGNOD« dwosu 1STTINANOAW,
ANIITAAHY « pouu ‘I=1’ (1) ®poul
QNdx pouu 1ST1739M1
HYVay Puodu ‘=1’ (T) puocf
aN3s puosu ISITHOILIANOD
IYVISTix J0key wIAVT
SATAVINVANY » deex( 33x1d53d
SNOIIVENNIYIdn ICADT FTAVIAWADY
HIAVIx J000ZU'I=y’(}) I€0D2
ININOJHWOD» Jeoozu duUNFZ] ROILONNJZy
AAONx EIVAIU’Tm}y () 30AI(
(FMVH» ‘3Q0Ky ‘HOR1x Seo®{dey) NOILIANODs SIVAIU SITAVIYVALIDITAYAy
33X13STdx CIVAGY 'T=] ’(T) 2eAR(
AJXIVIVAx SIPACU powd] QOHLANTVROIIVINAWODy
ANIIFAARY ) ANTATNIZ v
anas KHddds

rampdnng 303 indup WgAd 1 andig

JAVId

45



" DRAFT

3.1 Input Features

« Input is keyword driven for readability and can appear anywhere on the input line, allowing
for indentation. All alphanumeric input is matched on the first four characters. Comment
lines are designated by inputting a "C" in column 1.

« Each input line is first read as a character string, from which the input information is then
parsed. The resuit is that the user is given wamning and error messages if an input line isin
error, rather than crash the program. The exception is when a series of real or integer data
is to be input, in which case a standard free format read is used; this allows the user to input
data across multiple lines if desired.

« Random variables are input in the PFEM input block as opposed to being defined in both
the NESSUS/FEM and NESSUS/FPI input blocks. Also, a distribution and a descriptive
name is input for each random variable.
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3.2 Z-Function Definition (*ZFDEFINE)

In NESSUS 5.0, random variables are not defined in terms of whether they are "stress” or
"resistance” variables. Instead, they are defined as either "computational” or "explicit” random
variables. Computational random variables are those which affect the response calculation directly,
i.e., the finite element analysis. Explicit random variables are those which are non-computational,
i.e., not FEM random variables. (Random variables may also be both computational and explicit.)
In version 5.0, NESSUS/FEM will be the computational method used. Future versions will have
an option for the boundary element method to be the computational tool.

From the computational and explicit random variables, a very general response function, Z,
can be defined. This Z-Function is defined in this section.

Summary of *zroerine keywords
*2FDEFINE Signals beginning of z-function definition.
*ZFUNCTION Selects the response function.
*UZFUNCTION Signals that the user-defined z-function is to be used.
*COMPUTATIONALMETHOD Selects the computational method and random variables.
*EXPLICITVARIABLES Selects the explicit random variables.
*CVARIABLE Defines a computational response variable and operations.
*gND Signals end of z-function definition.

*2ZFDETINE

*2FDEFINE signals thc start of the z-function definition. Following keywords will be interpreted
as z-function keywords until the *enp keyword is reached.

*ZFUNCTION izfunc nzcoef
zcoef (1) ,i=l, nzcoaf

*ZFUNCTION is used to select the response function. If this card is omitted. the structural response
value selected in the *MVDEF INE input section will be used. (This keyword is considered optional.)
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Response function models are selected (1) from a library of pre-programmed functions available
in NESSUS, or (2) from a user-programmed subroutine. If the uzruoncTION keyword card is omitted,
then izfunc will refer to one of the pre-defined response functions available in NESSUS. If the
vzruNcTIOoN keyword card is present, then the user subroutine vzrunc is called, and the user is
required to provide coding to define the response function. The izfunc parameter is passed into
the uzrFuNC subroutine, so that the user can develop a personal library of response functions.

izfunc is the response function number.
nzcoef is the number of coefficients to be made available to the response function definition.

zcoef is the list of real coefficients to be made available to the response function. (Required
if nzcoef is greater than zero.)

*PZFUNCTION

UZFUNCTION signals that the user-subroutine uzrunc (User ZFUNCtion) is to be used to define the
response model. The default is to not call uzrunc.

NESSUS contains a library of pre-defined response models for often used functions, such as Paris
crack growth, Low Cycle Fatigue, etc. If the uzruNCTION keyword card is omitted, then izfunc
will refer to one of the pre-defined response models available in NESSUS. If the uzruncTION
keyword card is present, then the user subroutine UzFuUNC is called, and the user required to provide
coding to define the response model. The izfunc parameter is passed into the uzFuNc subroutine
so that the user can develop a personal library of defined response models.

*COMPUTATIONALMETHOD icmod nsvars
Jsvar (i), i=1, nsvars

The *CoMPUTATIONALMETHOD keyword is used to select the computational method and the associated
random variables. (Optional-use only if a finite element model is included.)

icmod is the computational method. (Required if nsvars is greater than zero)

icmod = 1 - NESSUS/FEM
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nsvars is the number of computational random variables. (Required if keyword is present.)

jsvarisaninteger list of computational model random variable numbers. (Required if nsvars
is greater than zero.)

*EXPLICITVARIABLES nrvars
jrvaxr (i), i=1l, nrvars

*EXPLICITVARIABLES is used to identify the explicitly defined random variables (Optional).
nrvars isthe number of explicitly defined random variables. (Required if keyword is present.)

jrvar is an integer list of explicitly defined random variable numbers. (Required if nrvars
is greater than zero.)

*CVARIABLE icvar

*CVARIABLE (Computational YVARIABLE) is used to define anew response variable that is a function
of the computational response variables obtained from the computational (e.g., FEM) analysis. The
definition for each response variable is given on a series of "unstarred” keywords within the
*CVARIABLE input block and must end with an nD statement.

Some instances when a *cVARIABLE would be used effectively in specifying a new response variable
include defining a (1) displacement measure in a different coordinate system, (2) maximum principal
stress occurring within a group of nodes in the finite element mesh, or (3) root-mean-square response
computed from a selected set of spectral case results.

Defaults are defined for each cvarRIABLE parameter and are indicated in the descriptions below.

icvar is the computational random variable number
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Summary of *cvarianrz keywords
Signals beginning of the *cvARTABLE definition.
*CVARIABLE Selects a response type.
RESPTYPE Selects a layer.
LaYER Specifies a list of conditions.
CONDITIONLIST Specifies a list of nodes.
NoDELIST Specifies a list of components.
coMPONENTLIST Selects a NESSUS Pre-defined operation.
OPERATION Selects a user-defined operation.
vopERATION Defines a coordinate transformation.
TRANSFORMATION Signals the end of the *CVARIABLE definition.
END

A description of each *CVARIABLE keyword is given below:

RESPTYPE jresp

RESPTYPE is used to select the response type. Valid response types are listed below. If
RESPTYPE is omitted, jresp will be settothe to the response type selected in the MVDEFINE

section.

jresp is the response key. Valid keys are listed below. A detailed explanation is
provided in Section 4.

50



DRAFT

Yalid Response Keys
1 = TOTAL DISPLACEMENT 36 = THE FREQUENCY IN CYCLES PER TIME
2 =TOTAL STRAIN 51 = REAL DISPLACEMENT
3=TOTAL STRESS 52 = REAL STRAIN
11 = PLASTIC STRAIN 53 = REAL STRESS
12 = BACKSTRESS 61 =s IMAGINARY DISPLACEMENT
13 = CREEP STRAIN 62 = IMAGINARY STRAIN
. 14 = THERMAL STRAIN 63 = IMAGINARY STRESS
17 = GENERALIZED STRAIN 71 =THE AMPLITUDE OF THE DISPLACEMENT
18 = GENERALIZED STRESS 72 = THE AMPLITUDE OF THE STRAIN
21 = MATERIAL STATE VARIABLES 73 = THE AMPLITUDE OF THE STRESS
25 = VELOCITIES 81 = THE PHASE OF THE DISPLACEMENT
26 = ACCELERATIONS 82 = THE PHASE OF THE STRAIN
30 = THE EIGENVALUE FOR THE MODE 83 = THE PHASE OF THE STRESS
31 = MODAL DISPLACEMENT (EIGENVECTOR) 91 = MEAN SQUARE DISPLACEMENT
32 = MODAL STRAIN 92 = MEAN SQUARE STRAIN
33 = MODAL STRESS 93 = MEAN SQUARE STRESS

35 = THE FREQUENCY IN RADIAN PER TIME 96 = STRESS YELOCITY

LAYER layer

LAYER is used to specify the layer number at which results will be extracted.
In NESSUS 5.0, this keyword is inactive.

layer is the layer number. (Default, 1ayer = 1)

CONDITIONLIST ncond
jeond (i), i=1, ncond

CONDITIONLIST defines alist of conditions (increments. modes, or spectral cases) from which
to extract results from. If this keyword is included. the opERATION keyword is required to
select an operation to be applied to the extracted data. (An operation is needed to compute
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and retumn a single implicit response variable from the list of results.) Additionally, the loop
over the number of conditions defined on the *CONDITION keyword card in the *MVDEFINE
section will be disabled. This is an optional keyword.

An example use of the CONDITIONLIST keyword might be to define a CVARIABLE
response variable to be the root-sum-square of a list of modal frequencies.

ncond is the number of conditions.

jcond is the list of condition numbers.

NODELIST nnod
jnode (1) ,i=1, nnod

NODELIST defines a list of nodes from which to extract results. If this keyword is included,
the opERATION keyword is required to select an operation to be applied to the extracted data.
(An operation is needed to compute and return a single implicit response variable from the
list of results.) Additionally, the loop over the number of nodes defined on the *NopE keyword
card in the *MvDEFINE section will be disabled. This is an optional keyword.

nnod is the number of nodes.

jnode is the list of node numbers.

CMON!NTLI#T ncomp
jcomp (1) , i=1, ncomp

coMPONENTLIST defines a list of components from which to extract results. If this keyword
is included, the opERATION keyword is required to select an operation to be applied to the
extracted data. (An operation is needed to compute and retum a single implicit response
variable from the list of results.) Additionally, the loop over the number of components
defined on the *coMpoNENT keyword card in the *MVDEFINE section will be disabled. This is
an optional keyword.

ncomp is the number of components.
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jcomp is the list of component numbers.

OPERATION iopt nocoef
ocoef (1), i=l, nocoef

OPERATION is used to select an operation to be applied to the extracted data. If iopt is 0 or
~ if this card is omitted, the requested response value, specified on the respTYPE keyword, is
simply retumed. If the CONDITIONLIST, NODELIST and/or COMPONENTLIST keywords are
used, the user is required to select an operation. (An operation is needed to compute and
return a single implicit response variable from the list of results.) The default is no operation.

NESSUS contains a library of pre-defined operations for often used functions, listed below.
If the vopeRATION keyword card is omitted, then iopt will refer to one of the pre-defined
operations available in NESSUS. If the uopeRaTION keyword card is used, then the user
subroutine UOPERA is called, and the user is required to provide coding to define the operation.
The iopt parameter is available in the uorERA subroutine so that the user can develop a
personal library of defined operations.

iopt is the operation number. If the UOPERATION keyword is not used, iopt is
used to select a pre-defined operation (see table below). - If the UOPERATION
keyword is used, the iopt user-defined operation coded in the UOPERA subroutine
is selected.

nocoef is the number of coefficients to be made available to the operation.

ocoef is the list of real coefficients to be made available to the operation. (Required
if nocoef is greater than zero.)
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NESSUS Pre-defined Operations

iopt| Operation

Algebraic Maximum Value
Algebraic Minimum Value
Absolute Maximum Value

Absolute Minimum Value
Square Root of the Sum of the Squares

WA WN -

COPERATION

UOPERATION signals that the user-subroutine vorera (User OPERAtion) is to be used to define
the operation. The default is to not call TOPERA.

NESSUS contains a library of pre-defined operations for often used functions such as
maximum value, minimum value, etc (see *OPERATION). If the vorERATION keyword card
is omitted, then iopt will refer to one of the pre-defined operations available in NESSUS.
If the vorERATION keyword card is used, then the user subroutine VOPERA is called, and the
user is required to provide coding to define the operation. The iopt parameter is available
in the voPERA subroutine so that the user can develop a personal library of defined operations.

TRANSFORMATION jtran
jaxis (1) ang(l1)
jaxis(2) ang(2)
jaxis(3) ang(3)

TRANSFORMATION specifies a coordinate transformation that is to be applied to the data. The
transformation is applied to the data before being operated on (see OPERATION keyword).
In general, transformations are clement type dependent: therefore, a complete description of
valid transformations is included in Section 4.0. This is an optional keyword.
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jtran is the transformation option. Valid options include:
jtran =0 - no transformation is applied and the following three lines are pot
read.
jtran = 1 - a rotational transformation is performed and the following three
lines are read.
jtran = 2 - principal values are computed and the following three lines are
not read.

{jaxis (i) ang(i), i= 1, 3) define the axis and angle of rotation for the
transformation. Rotations are applied in the same order as the { jaxis  ang) pairs
are input. Angles must be specified in degrees. Valid transformation are given in

Section 4.

The default is no transformation.

END signals the end of input for the current *cvaRIABLE. -

*END

*END signals the end of input for the *2rDEFINE section.
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3.3 Random Variable Definition (*RVYDEFINE)

*RVDEFINE

«RVDEFINE signals the start of the random variable definition. The following keywords will be
interpreted as random variable definition keywords until the *EnD keyword is reached.

*DEFINE izrvnum
TYname

mean sdev dist .
distribution_data
type

datablock

The *perINe keyword is similar to the *DErINE keyword used in NESSUS/FEM with the added
enhancement of defining a distribution type and a descriptive name. (Note, however, that for a
PFEM analysis, *DEFINE keywords are not input in the NESSUS/FEM input deck.)

irvnum is the random variable number.
rvname is a user-defined, 8-character name for the random variable.

dist is an alphanumeric distribution name (only the first four characters are significant).
Valid names are:

WEIBULL
NORMAL
EXTREMEVALUE
LOGNORMAL
CHISQUARE
MAXENTROPY
NESSUS
FRECHET
TWEIBULL
TNORMAL
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If dist = MAXENTROPY, TWEIBULL, Of TNORMAL, then the two distribution coefficients, as
defined in the FPI User’s Manual, are read off of the next line.

If dist = MAXENTROPY OT NESSUS, then k coefficients, as defined in the FPI User’s Manual,
are read from the following lines.

If the random variable number irvnum is in the jsvars list, i.e., irvnum is a computational
random variable, then the type and datablock are expected; otherwise they are not input.
Documentation for type and datablock are given in the NESSUS/FEM User’s Manual.
Examples for type are: FORCE, PROP, COOR, etc. The data block is the associated data
corresponding to the type, e.g., the forces, material properties, and coordinates.

*PERTURB jpert
jpvarl shiftl
jpvax2 shift2
jpvarn shiftn

*pERTURB defines a perturbation along with the random variable numbers and the amount each
random variable is to be perturbed.

Input for this keyword is identical to that in the NESSUS/FEM User’s Manual.
jpert is the perturbation number.
jpvar (i) is the random variable number.

shift (i) is the number of standard deviations by which the jpvar (i) random variable is
changed.
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3.4 Mean Value Analysis Definition (*MVDEFINE)

*MVDEFINE

*MVDEFINE signals the start of the mean value analysis definition. The following keywords will be
interpreted as mean value analysis keywords until the »enp keyword is reached.

In this section, the keywords to define the range of the PFEM analyses for the mean value first or
second order, (MVFO or MVSO) and the type of data to be analyzed, ¢.g., stress, or frequency, are
defined. The *MvDEFINE keywords provide the same functionality as the *MVFO keywords in
version 4.2. Mean value first order or second order analyses can be performed with PFEM for any
number of nodes, modes, components, increments, or harmonic cases in a single analysis.

The user specifies what data to process by defining the beginning and ending parameters for the
keywords: *COND, *NODE, *COMP. The beginning parameter defaults to 1 and the ending parameter
defaults to the beginning parameter. The parameters define the range of nodes, modes, etc., to

process.

Summary of *MvDErINE keywords
«MvDEFINE Signals the beginning of the mean value analysis definition.
*DATATYPE Selects the data type.
*RESPONSETYPE Selects the response type.
*CONDITIONNUMBER Selects the condition (increment, modal or spectral) numbers.
*NODENUMBER Selects the node numbers.
*COMPONENTNUMBER Selects the component numbers.
*LAYERNUMBER Selects the plate element layer number.
*PERTURBATIONUMBERS Defines the perturbation numbers.
*RANVARIABLENUMBERS Defines the random variables numbers.
*RESTART Signals restarting of probabilistic analysis.
=panM Signals approximate method turbine blade model will be used.
»gNp Signals the end of mean value analysis definition.

The purpose of these keywords is identical to version 4.2.

58



DRAFT

*MVDEFINE

*MVDEF INE signals the start of the mean value analysis definition. The following keywords will be
interpreted as mean value keywords until the *Enp keyword is reached.

*DATATYPE idata

This keyword is used to specify the type of data on which to perform the probabilistic analysis.
= 0 Incremental

= 1 Eigenvalue

= 2 Harmonic/spectral

No default. Must be specified for MV analysis.

*COND icondl icond2

*COND selects the beginning and ending condition numbers for the mean value analysis. Condition
refers to either incremental, modal, or harmonic/spectral analysis. The condition type is selected
with the *baTaType keyword. NESSUS will perform probabilistic analysis from condition number
icondl to icond2.

icond1 = beginning condition number for MV analyses.
icond2 = ending condition number for MV analyses.
icond1 default = 1.

icond2 default = icond1.
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*NODE inodel inode2

«NODE selects the beginning and ending node numbers for the mean value analysis. NESSUS will
perform probabilistic analysis from node number icondl to icond2.

inodel = beginning node number of MV analyses.
inode2 = ending node number for MV analyses.
inodel default = 1.

inode2 defauit = inodel.

*COMP icompl icomp2

«comp selects the beginning and ending component numbers for the mean value analysis. NESSUS
will perform probabilistic analysis from component number icompl to icomp2. Allowable
component numbers are 0 through 6.

icomp1 = beginning component number for MV analyses.
icomp2 = ending component number for MV analyses.
icomp1 default = 1.

icomp2 default = icompl.

*LAYER ilayl ilay2

~LAYER selects the beginning and ending layer numbers for the mean value analysis of the plate
clement (#75). NESSUS will perform probabilistic analysis from layer number ilayl to ilay2.
Allowable layer numbers are through 5.

ilay1 = beginning layer number for MV analyses.
ilay2 = ending layer number for MV analyses.
ila_yl default = 1.
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ilay2 default = ilayl.

*PERT npert
perts(i), i=l, npert

»pERT selects the perturbations to be used in the probabilistic analysis and the order in which the
random variables will be perturbed.

npert = the number of perturbations.
perts = is a list of perturbation numbers.

No default. Must be specified for MV analysis.

*RANVAR nranvr
ranvres (i), i=1, nranvr

*RANVAR selects the random variables to be used in the probabilistic analysis and their order. This
is the order the random variables will be presented in the user-written subroutines RESPON and
UZFUNC.

nranvr = the number of random variables.
ranvrs = is a list of random variable numbers.

No default. Must be specified for MV analysis.

*RESPTYPE irstyp

irstyp specifies the response variable to extract from the perturbation database. The allowable
options are:
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=01 A TOTAL DISPLACEMENT COMPONENT

=02 A TOTAL STRAIN COMPONENT

=03 A TOTAL STRESS COMPONENT

=11 A PLASTIC STRAIN COMPONENT

=12 A BACKSTRESS COMPONENT

=13 A CREEP STRAIN COMPONENT

=14 A THERMAL STRAIN COMPONENT

=17 A GENERALIZED STRAIN COMPONENT

=18 A GENERALIZED STRESS COMPONENT

=30 THE EIGENVALUE FOR THE MODE

=31 A MODAL DISPLACEMENT (EIGENVECTOR)
COMPONENT

=32 A MODAL STRAIN COMPONENT, [F
AVAILABLE

=33 A MODAL STRESS COMPONENT, IF
AVAILABLE

=35 THE FREQUENCY IN RADIAN PER TIME

=36 THE FREQUENCY IN CYCLES PER TIME

=51 A REAL COMPONENT OF THE
DISPLACEMENT -

No default. Must be specified for MV analysis.

=52 A REAL COMPONENT OF THE STRAIN

=53 A REAL COMPONENT OF THE STRESS

=61 AN IMAGINARY COMPONENT OF THE
DISPLACEMENT

=62 AN IMAGINARY COMPONENT OF THE
STRAIN

=63 AN IMAGINARY COMPONENT OF THE
STRESS

=71 THE AMPLITUDE OF THE DISPLACEMENT

a72 THE AMPLITUDE OF THE STRAIN

=73 THE AMPLITUDE OF THE STRESS

=81 THE PHASE OF THE DISPLACEMENT

=82 THE PHASE OF THE STRAIN

=83 THE PHASE OF THE STRESS

=91 A MEAN SQUARE VALUE OF THE
DISPLACEMENT

=92 A MEAN SQUARE VALUE OF THE STRAIN

=93 A MEAN SQUARE VALUE OF THE STRESS

=96 A STRESS VELOCITY VALUE

*RESTART irest

This keyword is used to bypass the mean value finite element perturbations. All probabilistic
algorithms will be initiated from this point. The usermust have available a jobname.pdb perturbation

database.

irest specifies the restart option. irest =1 signifies NESSUS to bypass mean value finite clement

database generation.

*PAAM
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Signifies NESSUS that the approximate model for the turbine blade is to be used. See the 5th annual
PSAM report or the paper, "Application of the Probabilistic Approximate Analysis Method to a
Turbopump Blade Analysis,” by B. Thacker, R. McClung, and H. Millwater, presented at the 31st
SDM Conference, Long Beach, CA, 1990.

*END

END signals the end of input for the *MvVDEFINE section.
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3.5 Advanced Mean Value Analysis Definition (*AMVDEFINE)

*AMVDEFINE

«AMVDEFINE signals the start of the advanced mean value analysis definition. The following
keywords will be interpreted as advanced mean value analysis keywords until the ~exD keyword

is reached.
If the *amMvDEFINE card is present, an advanced mean value analysis will be performed.

In this section, the keywords to define the range of the PFEM analyses for the advanced mean value
with iterations (AMV+) first or second order (AMVFO or AMVSO) procedure are specified.
Advanced mean value first order or second order analyses can be performed with PFEM for any
number of nodes, modes, components, increments, or harmonic cases in a single analysis.

A significant enhancement in version 5.0 is the automated iteration capability for the p-level and
z-level procedures. The * 1rER keyword and the FPI *ANALTYPE keyword controls these algorithms.

The user specifies what data to process by defining the beginning and ending parameters for the
keywords: *COND, *NODE, *COME. The beginning parameter defaults to 1 and the ending parameter
defaults to the beginning parameter. The parameters define the range of nodes, modes, etc., to
process. (Note: AMV+ analyses can be very time consuming. The user should be aware of the
number of probabilistic analyses being specified).

Summary of *AMvDEFINE keywords
*AMVDEFINE Signals beginning of advanced mean value keywords.
*ITER Bef'mes the convergence criteria for the AMV+ p-level and z-level
gori . ‘
*CONDITIONNUMBER Selects the condition (increment, modal or spectral) numbers.
«NODENUMBER Selects the node numbers.
*COMPONENTNUMBER Selects the component numbers.
~LAYERNUMBER Selects the plate element layer numbers.
~gnp Signals end of mean value keywords.

The purpose of these keywords is identical to version 4.2. The *ITER keyword is a new keyword.
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*AMVDEFINE

*AMVDEF INE signal the start of the mean value keywords. The following keywords will be interpreted
as advanced mean value keywords until the *EnD keyword is reached.

*COND icondl icond2

*COND selects the beginning and ending condition numbers for the mean value analysis. Condition
refers to either incremental, modal, or harmonic/spectral analysis. The condition type is selected
with the *DATATYPE keyword in the MVDEFINE section. NESSUS will perform AMV+ analyses
from condition number icond1 to icond2.

icond1 = beginning condition number for MV analyses.

icond2 = ending condition number for MV analyses.

icondl default = 1.

icond2 default = icondl. .

*NODE inodel inode2

*NoDE selects the beginning and ending node numbers for the advanced mean value analysis.
NESSUS will perform probabilistic analysis from node number icond! to icond2.

inodel = beginning node number for MV analyses.
inode2 = ending node number for MV analyses.
inodel default = 1.

inode2 default = inodel.
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*CoMP icompl icomp2

»comp selects the beginning and ending component numbers for the advanced mean value analysis.
NESSUS will perform probabilistic analysis from component numbericompl to icomp2. Allowable
component numbers are 0 through 6.

icomp1 = beginning component number for MYV analyses.
icomp2 = ending component number for MYV analyses.
icompl default = 1.

icomp2 default = icompl.

*LAYER ilayl ilay2

»LAYER selects the beginn.ing and ending layer numbers for the advanced mean value analysis of
the plate element (#75). NESSUS will perform probabilistic analysis from layer number ilayl to
ilay2. Allowable layer numbers are 1 through 5.

ilay1 = beginning layer number for MV analyses.
ilay2 = ending layer number for MV analyses.
ilayl default = 1.

ilay2 default = ilayl.

*ITER
itmax tolerr

~1TER defines the convergence criteria for the AMV+ z-level and p-level iteration procedures. The
probabilistic algorithm will continue until either the maximum number of iterations is reached,
itmax, or the convergence tolerance, tolerr, is satisfied. The default is AMYV analysis, itmax =
1 and tolerr = 1.E-8.
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*END

END signals the end of input for the *AMVDEFINE section.
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4.0 CVARIABLE Transformations and Response Values

The following sections present valid transformation options, response type options, and component
definitions for each response quantity available.
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4.1 Valid Transformations

TRANSFORMATION jtran
data block if jtran =1
where
jtran = transformation option
and

jtran=0 => no transformation will
be performed

jtran=1 => quantities will be rotated to a user-defined
coordinate system as described below

jtran=2 => quantities will be rotated to the principal
value coordinate system

DATA BLOCK FOR jtran =1 FOR ELEMENT TYPES 7 AND 154

TRANSFORMATION !

jaxis(1) ang(1)

jaxis(2) ang(2)

jaxis(3) ang(3) -

where

jaxis = axes of rotation
ang = angles of rotation in degrees

and

jaxis=1 => x-axis
jaxis=2 => y-axis
jaxis=3 => z-axis

The user-defined coordinate system x’y’z* is defined in terms of the global coordinate system

x°y°2° as follows. First, x'y'z' is constructed by rotating x°y°z° by ang(1) about the positive
jaxis(1)-axis of x°y °z° in the right-handed sense. Second, x2v?z % is constructed by rotating x 'y 'z '
by ang(2) about the positive jaxis(2)-axis of x 'y 'z ' in the right-handed sense. Third and last, x’y ’z>
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is constructed by rotating y2y2;2 by ang(3) about the positive jaxis(3)-axis of xzyzzz in the
right-handed sense. From th13 procedure in three dimensions, any coordinate system x°y’z’ can

be constructed from x°y °z°

DATA BLOCK FOR jtran =1 FOR ELEMENT TYPES 10 AND 153

TRANSFORMATION 1
idummy angle
idummy rdummy
idummy rdummy

where

idummy = unused integer value
rdummy = unused real value
angle = angle of rotation in degrees

The user-defined coordinate system z'r' is defined in terms of the global coordinate system z°r°
as depicted in Figure 2. ~

rl

Figure 2.
DATA BLOCK FOR jtran =1 FOR ELEMENT TYPES 3, 11, 151 AND 152
TRANSFORMATION 1
idummy angle
idummy rdummy
idummy rdummy

where
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idummy = unused integer value

rdummy = unused real value

angle = angle of rotation in degrees
The user-defined coordinate system x'y ' is defined in terms of the global coordinate system x°y°
of the perturbation database, as depicted in Figure 3.

y' Y’
%!
angle
xo
Figure 3.

DATA BLOCK FOR jtran =1 FOR ELEMENT TYPES 75 AND 938

The option jtran = 1 is not currently implemented for these elements since mesh data (which may
not reside on the perturbation database) are needed to calculate rotations from the global coordinate

system.
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4.2 Response Values for Incremental Analysis

Table 1. Admissible values of jresp (response type) for incremental problems.

1 = total displacement
2 = total strain

3 =total stress

11 = plastic strain

12 = backstress

13 = creep strain

14 = thermal strain

17 = generalized strain
18 = generalized stress
21 = material state variables
25 = velocities

26 = accelerations
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ation option) for each incremental response type

(jresp) and element type (NA = response type not available).

2. Admissible values of jtran (transform

Table
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Available components for incremental problems

1)

2)

3)

4)

Component definitions for scalar response quantities

jresp = 21: (material state variables)
component | = equivalent plastic strain
component 2 = equivalent creep strain
component 3 = equivalent swell strain

If jtran = 0 (no transformation), then

All usual components are available (including component #0
if it happens to be defined).

If jtran = 1 (rotation), then

Component #0 is available (if it happens to be defined).
Other components (1 , 2, ..., etc. ) are available in the
new user-defined coordinate system.

If jtran = 2 (principal values), then the available components are

0 = effective stress or effective strain

1 = minimum principal stress or principal strain

2 = intermediate principal stress or principal strain

3 = maximum principal stress or principal strain

4 = maximum shear stress or maximum engineering shear strain

except for element types 3 and 151 when jresp = 2, 11, 13, or 14, in which case the available
components are

0 = effective strain
1 = minimum principal strain in the xy-plane
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2 = retumed as zero
3 = maximum principal strain in the xy-plane
4 = maximum engineering shear strain in the xy-plane
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4.3 Response Values for Eigenvalue Analysis

Table 3. Admissible values of jresp (response type) for eigen-problems.

30 = the eigenvalue for the mode

31 = modal displacement (eigenvector)
32 = modal strain

33 = modal stress

35 = the frequency in radian per time
36 = the frequency in cycles per time
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Table 4. Admissible values of jtran (transformation option) for each eigen-problem response type
(jresp) and element type (NA = response type not available).

151 152 153

0 0 0 0
1 1 1 1
0 0 0 0 0 0 0 0 0
32 1 1 1 1 NA 1 1 1 1
2 2 2 2 2 |- 2 2 2 |
0 0 { o 0 0 o |0 0 0
33 1 1 1 1 NA 1 1 1 1
| 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0
35
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. Available components for eigen-problems

1) Component definitions for scalar response quantities

jresp = 30:

component 1 = the eigenvalue for the mode
jresp = 35:

component 1 = the frequency in radian per time
jresp = 36:

component 1 = the frequency in cycles per time

2)  If jran = 0 (no transformation), then

All usual components are available (including component #0
if it happens to be defined).

3) If jtran = 1 (rotation), then

Component #0 is available (if it happens to be defined). .
Other components ( 1,2, ..., etc. ) are available in the
new user-defined coordinate system.

4) Ifjtran=2 (principal values), then the available components are

0 = effective stress or effective strain

1 = minimum  principal stress or principal strain

2 = intermediate principal stress or principal strain

3 = maximum  principal stress or principal strain

4 = maximum shear stress or maximum engineering shear strain

except for element types 3 and 151 when jresp = 32, in which case the
available components are
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0 = effective strain

1 = minimum principal strain in the xy-plane

2 = retumed as zero

3 = maximum principal strain in the xy-plane

4 = maximum engineering shear strain in the xy-plane
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4.4 Response Values for Spectral Analysis

Table 5. Admissible values of jresp (response type) for spectral problems.

51 = real displacement

52 = real strain

53 = real stress

61 = imaginary displacement

62 = imaginary strain

63 = imaginary stress

71 = the amplitude of the displacement
72 = the amplitude of the strain

73 = the amplitude of the stress

81 = the phase of the displacement
82 = the phase of the strain

83 = the phase of the stress

91 = mean square displacement
92 = mean square strain

93 = mean square stress

96 = stress velocity -
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response type not available).

ormation option) for each spectral response

type (jresp) and element type (NA

Table 6 (1 of 2). Admissible values of jtran (transf

NA
82
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Table 6 (2 of 2). Admissible values of jtran (transformation option) for each spectral response
type (jresp) and element type (NA = response type not available).

0 0 0 0 0 0 0 0 0 0
81
0 0 0 0 0 0 0 0 0
82 NA
0 0 0 0 0 0 0 0 0
83 NA
| i
0 0 0 0 0 0 0 0 0 0
91
0 0 0 0 0 0 0 0 0
92 NA
0 0 0 0 0 0 0 0 0
93 NA
0 0 0 0 0
96 1 1 1 1 NA | 1 1 1 1
2 2 2 2 2
jresp
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Available components for spectral problems

1)  If jtran = 0 (no transformation), then

All usual components are available (including component #0
if it happens to be defined)

except
component #0 is not available for jresp = 72, 73, 82, 83, 92 or 93.

2) If jtran = 1 (rotation), then

Component #0 is available (if it happens to be defined).
Other components ( 1,2, ..., etc. ) are available in the
new user-defined coordinate system.

3)  If jtran = 2 (principal values), then the available components are

0 = effective stress or effective strain

| = minimum principal stress or principal strain

2 = intermediate principal stress or principal strain -

3 = maximum principal stress or principal strain

4 = maximum shear stress or maximum engineering shear strain

except for clement types 3 and 151 when jresp = 52 or 62, in which case the available
components are

0 = effective strain

1 = minimum principal strain in the xy-plane

2 = retumned as zero

3 = maximum principal strain in the xy-plane

4 = maximum engineering shear strain in the xy-plane
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5.0 NESSUS/RISK

A risk module has been added to NESSUS that will compute the risk with respect to cost,
performance, and a user-defined criteria.

COST

Risk with respect to cost is computed using the formula
Risk/Cost = Cy(x) + P((x) * C(x) + (1-P)*NC(x)

where x is the allowable response in a reliability analysis such as stress, displacement, cycles to
failure, G, is the initial cost as a function of x, P, is the probability of failure as a function of x, and
NC(x) is the probability of nonfailure as a function of x. The P(x) curve may be the CDF computed
by NESSUS; however, in general, x can be any design parameter including non-random variables.

The four functions, P(x), Cy(x), C(x) and NC(x) are defined with appropriate keywords
defined below. The failure function, P(x), is defined in table form using the *xpr keyword. The
three cost functions, Cy(x), C(x), and NC(x) are defined using the *crunc keyword. The XPF and
CFUNC x values do not have to coincide. The output points, x,, at which the risk is to be computed
are defined with the *xcour keyword. The output points do not have to coincide with the failure
function or cost function points. RISK will interpolate linearly the failure function and cost function
values to use in the equation for risk. However, no extrapolation is allowed; therefore, the output
points must lie within the failure function and cost function data. )

Example:

The user has computed a P, function which is the probability of failure of a structure as a
function of a memb§r area, A. Thus, x is the member area A. (Note, in this example, x is not a
PFEM response.) The initial costs are assumed to vary linearly with A. The cost of a failure is
assumed to be independent of A; thus, the cost function, or consequences function, is assumed to
be constant with A. The cost of nonfailure is also assumed to be constant with A, although at a far
less magnitude than the cost of failure function. The user desires the risk at a number of points
between the areas 0.1 and 1.0.

The input file would look like:

*RISK to run risk stand-alone, start file with *RISK
o] comments are allowed

C

o define the probability of failure function
c five points will be used
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*TABL S indenting is allowed
0.05 .999
0.3 .980
0.5 .950
0.7 .925
1.0

c define cost functions

c three points will be used
*COST

*CFUNC 3

1 2.0 S0. 1.0
5 3.11 50.1.0
0 4.0 SO0. 1.0

define the ocutput points
(areas for which risk is to be computed)

ten points are used
*XCOUT 10

QW WL &WwNKH

Q ; HOOOOOOOOO
. - .« .

end cost input

g
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PERFORMANCE

A second analysis method in RISK is based on performance. In this approach, the risk with
respect to performance is adjusted by changing the primitive random variables to meet a
user-specified probability of failure at user specified design values x. This is, in essence, part of the
design process.

The input requirements are the P, function which can be computed automatically by PFEM,
the random variables statistics and probabilistic sensitivities, and the design requirements. The P,
function is input with the *xer keyword as before. The random variable statistics and probabilistic
sensitivities are input with the *RvDEFINE keyword. The design requirements are input under the
*PERFORMANCE keyword by using the *preQ and *bvar keywords. NESSUS/RISK will compute
the necessary changes in the random variable means and standard deviations needed to meet the
requirements. Each random variable will be adjusted independent of the others, and the mean and
standard deviation are adjusted independently.

The algorithms used in RISK are described in the OCT. 1991 PSAM monthly, Appendix C.

Assumptions:

The user should be aware of the assumptions involved in the implemented algorithms. First,
for nonlinear functions and nonnormal distributions, the computed design changes are only a first
order estimate. An iterative process is needed for an accurate solution, as outlined in the technical
writeup. Second, the probabilistic sensitivities are assumed constant, whereas, in general they will
vary over the range of the failure function. It is assumed that when utilizing RISK/Performance,
the user will be focusing on a specific area of the failure function, e.g., left tail, and the probabilistic
sensitivities will be approximately constant. Third, the technical writeup details an algorithm for
a variety of nonnormal distributions. In this version of NESSUS/RISK, a normal distribution is
assumed for all random variables.

Example:

This problem has two random variables, x,, x, with statistics
}=25. ©,=4. normal distribution
K =10. ©,=3. normal distribution
and probabilistic sensitivity factors

o, =-0.8 o, = 0.6

The failure function is defined by two points in the left tail.

87



DRAFT

x=1 P, = 1.35E-3
x=2 P=0.1

The design requirements are:
P,=233E4atx=1

and
P=00latx=15

Both the mean and standard deviation will be changed independently to meet the design requirements
if needed.

The input file would look like:
*RISK
*PERFORMANCE
*DREQ 2 two points are requested
1.0 2.33E-4
2.0 0.001
o -
c both mean and sigma to be varied
*DVAR BOTH
*END
c
*XPr
*TABLE 2 two points used
1.0 1.35E-3
2.0 0.1
*END
c
(o] define random variables
C
(o] note: presently all ran vars assumed normal
*RVDEFINE
*DEFINE 1
25. 4. NORMAL
-0.8
*DEFINE 2
10. 3. WEIBULL
0.6
*END
o
C end risk input
*END
USER
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An option for a user-defined criteria for risk is provided through a user-written subroutine,
USRRSK. The P, function defined by *xer and the random variable statistics defined through
*RVDEFINE can be used. This option can be used when running risk stand-alone or with PFEM.
A copy of USRRSK is given below.

SUBROUTINE USRRSK(IERROR)
IMPLICIT REAL*8 (A-H,0-Z)

c
PARAMETER (MRANV=100)
PARAMETER (MAXNP = 100)
o]
C*************************************************i*****************
C ** USER-DEFINED RISK lallad
C ** THIS SUBROUTINE IS ACTIVATED BY THE *USER KEYWORK IN A *k
C ** NESSUS/RISK INPUT FILE. THE *XPF AND *RVDEFINE INFORMATION **
C **x CAN BE USED WITH THIS OPTION. fallad
C************************i***************t**************t*********ﬁ*
c _________________________________________________ - -
c
COMMON / ALGEM / ICREAD, ILPRNT, JLPRNT, ICONSL, IPOSTF, ISCRAF,
1 IPLOTE, IRSTRT, JCREAD, IRVBIN, IDBASE, IRVDEF,
2 PIDUM ,LINE ,LINE2
o4
c random variable definitions
COMMON /RVDEFI/ NUMRVS, LRVNUM (MRANV) , RVMEAN (MRANV) , RVSDEV (MRANV) ,
+ LRVDST(MRANV),RVLLMi(MRANV),RGULMT(MRANV),
+ LRVNMK (MRANV) , RVCOEF (9, MRANV)
C
COMMON /RVSENS/ ALPHA
DIMENSION ALPHA (MRANV)
c ,
(o) probability of failure input
COMMON / XPFCN / XPF,NXPF,XPFNEW
c
c _____________________ - - - PRp—— -

DIMENSION XPF (MAXNP,2),XPFNEW (MAXNP)

CrRAERRARAXRARRARAKRRARARRAARRRRRAARARNARARRA R RA SR AR A AAR AR RN R AR AR A

c variable description
C********i****************ﬁ***********************R*ﬁ*t************t
ICREAD - input unit to read from

ILCONSL -~ write to screen

ILPRNT -~ output file

XPF(I,J) - failure function
- row I is z value

o000
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j is pf value

NXPF - number of XPF points

DESCRIPTION OF COMMONS: /RFDEFI/ AND /RVNAME/

HOLDS THE INFORMATION READ IN FROM THE *DEFINE INPUT DATA

/RFDEFI/
/RFDEr1/
/RFDEFI/
/RFDEFI/
/RFDEFI/
/RFDEFI/
/RFDEFI/
/RFDEFI/
/RFDEFI/
/RVNAME /

NUMRVS -
LRVNUM -
RVMEAN -
RVSDEV -
LRVDST -
RVLLMT -
RVULMT =
LRVNMK -
RVCOEF -
RVNAME -

ALPHA ()

NUMBER OF RANDOM VARIABLES

RANDOM VARIABLE NUMBER

MEAN

STANDARD DEVIATION

DISTRIBUTION

LOWER LIMIT (ONLY FOR LRVDST = 6,9,10)

UPPER LIMIT (ONLY FOR LRVDST = 6,9,10)

NUMBER OF COEFFICIENTS (ONLY FOR LRVDST = 6,7)
COEFFICIENTS

RANDOM VARIABLE NAME

- prob. sensitivities of random variables I

IERROR = ERROR INDICATOR
IERROR = 0

ctt**************t**t*******************t************t*t****ﬁ**t****

USER-DEFINED RISK

o000 aaan0000aQ0

RETURN
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Executing Risk

NESSUS/RISK can be executed stand-alone or in an automated analysis with PFEM.
RISK Stand-alone

Begin input file with *RISK keyword. All input must be in input file.
RISK with PFEM

In this instance, the risk analysis will be performed after a PFEM analysis. The RISK input
must appear at the end of the usual PFEM input file. A schematic of the input file is given below.

*PFEM

PFEM input data
*END
c e - -
*FEM

FEM input data
*END
C -
*FPI

FPI input data
*END
c -----------------
*RISK i

RISK input data
*END

When coupled with PFEM, the RISK P, function defined by #xer will be the CDF computed
by PFEM. All other data must be supplied in the RISK input data section. In procedural terms,
the steps that will be taken are:

1) PFEM will compute the CDF using the AMV+ algorithm, etc., exactly as before.
2) PFEM will write a RISK input file and insert the computed CDF under the *xer keyword.
3) RISK will be called to compute the risk with respect to the user requirements.

4) PFEM will proceed to the next node, increment, mode, etc., and steps 1-3 will be repeated
according to the input file.

All of this is fully automated from a single input file. The risk output will appear in the
jobname . out file.
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RISK Input Format

RISK will compute the risk with respect to cost, performance, and a user-defined criteria.
Currently, risk can be computed for only one of the analysis types in a single analysis.

There are currently six major keyword sections in RISK. They are: #RISK which must precede
all other risk keywords, *COST, *PERFORMANCE, *USER, *XP¥, *RVDEFINE. *RISK must precede
these keywords. As with other NESSUS input modules, only the first 4 characters are significant;
the input is column independent and the order is unimportant.

Summary of RISK keywords

«xpF - indicates the beginning of the failure function definition.

+RVDEFINE - indicates the beginning of the random variable definitions and sensitivities.
*COST - signifies the risk cost algorithm is to be used.

~PERFORMANCE - signifies the risk performance algorithm is to be used.

~ySER - signifies a user-defined risk algorithm is to be used.

*END - ends the risk input datafile.

A schematic of the risk keywords is given below.

*RVDEFINE
*DEFINE
*END

*COST
*CFUNCTION
*XCOUT

*END

- - -—— - — - - -
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*PERFORMANCE
*DREQ
*DVAR

*END

*USER
*END

*xPF signals the start of the definition of the failure function. This function is defined in
terms of a variable x and a probability of failure. This function can of course represent a CDF
computed from NESSUS but need not. The XPF data can be used with any risk analysis type.

xpr itself has subkeywords used to designate the input format. Currently, NESSUS 5.0 is
limited to tabular input only. The subkeywords for XPF are *TABLE and *END. *TABLE is used to
signify tabular input and *EnD is used to signify the end of the XPF data.

Signifies that the input is to be in tabular form.

npt s signifies the number of points in the table.

Signifies the end of the XPF data.

For example, an XPF curve defined by 5 points would be input as
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*XPF

*TABL 5
X1 Prl
X2 Pr2
X3 Pr3
X4 Pr4
X5 PFS
*END

where x’s are the variable points and the P,’s are the corresponding probabilities of failure. As
always, the keyword section is closed with a ~END.

*RVDEFINE

This section is used to define the mean, standard deviation, distribution type, and probabilistic
sensitivity for each random variable. This information is necessary for the risk performance
algorithm, but can be used by any analysis method. The input format is similar to that used in the

RVDEFINE section of PFEM.
The subkeywords for the RVDEFINE section are: *DEFINE and *END.

*DEFINE irvnum
mean stdev dist

alpha

This keyword signals the definition of the random variable mean, standard deviation,
distribution type, and probabilistic sensitivity factor for random variables, irvnum.

irvnum is the random variable number.

mean is the random variable mean value.

stdev is the random variable standard deviation.
dist is the random variable distribution type.

alpha is the random variable probabilistic sensitivity factor.
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*DEF INE is repeated numrv times, where numrv is the number of random variables.

*END

Signifies the end of the RVDEFINE data.
As an example, for a problem with 2 random variables, the RVDEFINE section might look like

*RVDEFINE

*DEFINE 1

25. 4. NORMAL
-0.8

*DEFINE 2

10. 3. WEIBULL

0.6

*END

This section signals that the cost algorithm will be used. The subkeywords for the COST
section are: *CYUNCTION and *XCOuT and *END. -

*CFUNCTION ncpts
x, cl;, ¢ nc, i=l,ncpts

T D D R S e S D 8 T R e D Y D . - - - " —— —— - - - - -

This keyword signals the input of the cost function input.

ncpts is the number of cost function entries.

The input is in four columns: x value, initial cost at this x, cost at this x, and noncost at this x.
x, is the x value point.

c0, is the initial cost at x,.
c, is the cost of failure at x,.
nc, is the cost of nonfailure at x,.
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*XCOUT nxcpts
x, i=]l,nxcpts

This section signals the definition of the user-defined output points.
nxcpt s is the number of output points.

x, is the x value of the output points.

Signifies the end of the COST data.

*P ERFORMANCE

This section defines the keywords for computing the risk with respect to performance. The
subkeywords for the COST section are: *DVAR and «DREQ and *END.

*DREQ ndzrpts
x, PE, i=l,ndrpts

This keyword is used to input the design requirements which consist of required probability
of failure at a design value x.

ndrpts is the number of design requirement input points.
x, is the design value.
p£, is the required probability of failure at x;. |

For example, if the requirements are a probability of failure of 0.001 at x=10, and P, = 0.002 at
x=20, the input would be:

*DREQ 2
10. 0.001
20. 0.002
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*DVAR desvar

This keyword indicates which variable, (mean, or standard deviation, or both) to alter to meet the
requirements. The mean or standard deviation is modified independently.

desvar = '"MEAN’, 'STDEV’, or 'BOTH’

This keyword signifies that the user-defined subroutine USRRSK will be called. The XPF
and RVDEFINE data sections can be used with USER.

———— . ——— —— ————— — — > > —— — T T —— —————

Signifies the end of the entire risk input file.
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Appendix B.1 /
A Review of Fatigue Models

University of Arizona

A REVIEW OF FATIGUE MODELS
The limit state expressions and reliability analysis strategies
relative to the models.

by
C. J. Kung
Paul H. Wirsching

The University of Arizona
Tucson, AZ 85721

STRESS BASED FATIGUE LIFE PREDICTION

C-1 The characteristic S-N curve; constant amplitude stress: no
endurance limit, mean stress; notch effects; multiaxial stress.

C-2 Multi-linear S-N curve (includes endurance limit); constant
amplitude stress

C-3 The modified Goodman model; constant amplitude stress:
includes both fatigue and yield failure modes.

C-4 The general S-N curve (non-linear) representation of fatigue
strength, e.g., MIL-HDBK-SE; constant and variable amplitude stress;
mean stress.

C-5 Characteristic S-N curve with no endurance limit; variable
amplitude stresses. linear damage accumulation; general variable
amplitude stress; stationary Gaussian processes including both narrow
band and wide band; mean stress.

C-6 Characteristic S-N curve with no endurance limit;variable
amplitude stresses including sequence effects; general variable amplitude
stress; stationary Gaussian processes including both narrow band and
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wide band; mean stress.

C-7 Multilinear S-N curve; variable amplitude stresses; no
sequence effects

STRAIN-BASED FATIGUE LIPE PREDICTION (Local Strain
Analysis)

L-1 The high cycle component of the general strain life
relationship: constant amplitude stress; mean stress. notch effects; stress
endurance

L-2 The general strain-life relationship and low cycle fatigue:
constant amplitude stress; mean stress; stress relaxation

L-3 Low cycle fatigue under random stresses; no sequence
effects; mean stress; stress relaxation

THE FRACTURE MECHANICS MODEL TO DESCRIBE FATIGUE CRACK
PROPAGATION (subcritical crack growth)

P-1 Paris law to describe fatigue crack growth; no threshold
level; constant amplitude stresses; mean stress.

P-2 Paris law to describe fatigue crack growth: no threshold
level; variable amplitude stresses including stationary random processes;
equivalent stresses

P-3 Paris law to describe fatigue crack growth; threshold stress
intensity factor; variable amplitude stresses including stationary random
processes; equivalent stresses

F-4 Polynomial models to describe fatigue crack growth; variable
amplitude stresses; equivalent stresses

P-S Crack growth models for variable amplitude stresses where
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sequence effects are important; computer codes for cycle-by-cycle
counting.

HIGH TEMPERATURE, LOW CYCLE PATIGUR (synergistic effects of
creep and fatigue)

H-1 Linear and elliptical rule; constant amplitude stress
H-2 Frequency modified strain; constant amplitude stress

H-4 Strain range partitioning; constant amplitude stress
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C-1 Characteristic S - N Curve
High Cycle Fatigue (Constant Amplitude Stress)

e Model for strength

)
log$

logN

Cycles to failure
N=AS""

Parameters :

Applied stress range, S
Fatigue strength coefficient, 4
Fatigue strength exponent, m

¢ Assumptions and Comments

Cycle life N > 10°.

Smooth surface.(no cracks)

No aggressive corrosion.

No creep. (high temperature effects)
No endurance limit.

Constant amplitude stress.

G ol o A

e Uniaxial Stresses
o can be stress range o, or stress amplitude o4
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Mean stress models

Soderberg’s linear model E; + T, =1

Goodman'’s linear model Zs + Im _1
Sy S.

Morrow’s linear model Za + Im _

SN g !/

Gerber’s parabolic model Zs + (‘a'_,..)z =1

P S~ Su
e Ta \2 Om\2 _
Elliptic model ( S +( 5 )y =1

where
Om . Inean stress

S, : ultimate strength
S~ : fatigue strength at N cycle
Sy : yielding strength

e Multiaxial Stresses (“a” or “m” indicates amplitude or mean of the stress com-

ponent.

_ 1
Ca = \/El(ara —0ya)? +(0ya — 0:a)? + (00 —0za)? + 6(7:2v¢ + Tvzn +724)]

Om = Czm + Oym +0m

Ta . L.
Oar = 2__  equivalent completely reversed uniaxial stress

%

o Reliability Considerations :
let m = constant, A = a random variable describing the variability in material
behavior.
a.) Failure when (N < Np) = (A < NoS™); where Ny is design life; and N is
cycles to failure, a random variable (maybe difficult to formulate in some
cases). Probability of failure is Py = P-[A < NoS™]
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b.) Failure when (S < o) at given No

S

Py = Pfo > S]
= Plo > (30)]

Note : Here S and A are random variables. Typically Cs = 10%

o References

(1] Collins, J. A., Failure of Materials in Mechanical Design,

John Wiley & Sons, 1981.
[2] Shigley, J. E., Mechanical Engineering Design, McGraw-Hill, 1972.

[3] Dowling, N. E., “Deformation, Fracture, and Fatigue of Engineering Mate-
rials,” Virginia Polytechnical U., 1989. (manuscript in development)
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C-2 Multi-Linear S — N Curve
(Under Constant Amplitude Stress)

¢ Basic Assumptions:
1. Stress is constant amplitude having amplitude (or range), c. The mean stress
is Om.
2. Stress modeling error is given by the random varible B so that the actual
stress is a random variable,
o= Bo'

where o' is the estimate of stress, S, using the best predictive method.
3. The service life is given as Ng.
4. Fatigue strength is defined by a mulitilinear S — N curve.

¢ Model for fatigue strength

S

S
Sﬁ_l ....... \

Sa e
S] .............\

S .

log-log scale

So

107



NS™ = A,, fOl'SoSS<S]
NS™ = A,, for S) SS<S¢
NS™ = A,, for SzSS<53

NS™ = A, for Si—1 < S < Si

or, in general form,
NS™ = A,, for $;_.1 <85<S; i=1,23,...,k

where
S : applied stress range or amplitude
A; : fatigue strength coefficient
m; : fatigue strength exponent

Let So = 0 and S = 00.

e Mean Stress Effects:
If o,, > 0, then the fatigue strength should be

Om 1mi
Ai = Ao, [1 - -3.:

where Ay, is the fatigue strength coefficient for the ith segment for zero mean

stress.

¢ Reliability Consideration:
1. The event of failure prior to completion of the service life Ny is [0 < 5]
2. The probability of failure is

Pf = Pr[d < S]
Reliability prediction can be made by Wu/FPI or AMVFO.

o Comments:
1. Existence of endurance limit.
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If an endurance limit exists, then the linear section representing the
endurance limit is in the form of NS™! = 4; with 4; = co. Thus the
first term of Eq. 1. vanishes. Eq. 1. will not lose its generity with

the existence of the endurance limit.

o References

[1] Wirsching, P. H. and Light, M. C., “Fatigue Under Wide Band Random
Stresses,” Journal of the Structural Divisiog, ASCE, Vol. 108, No. ST7,
pp.1593-1607, 1979.

[2] Wirsching, P. H., “Considerations of Probability Based Fatigue Design for
Marine Structures,” Marine Structure, 1 (1988) 23-45.

(3] Wirsching, P. H., “Fatigue Reliability for Offshore Structures,” Jourpal of
Structural Engineering, vol. 110, No. 10, Oct. 1984.

[4] Collins, J. A., Failure of Materials in Mechanical Design,
John Wiley & Sons, 1981.

[5] Dowling, N. E., “Deformation, Fracture, and Fatigue of Engineering Mate-
rials,” Virginia Polytechnical U., 1989. (manuscript in development)
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C-3 Modified Goodman Model
High Cycle Fatigue
Combines Fatigue and Yield Failure Modes
(Constant Amplitude Stress)

e Model for Strength

| Gac Fmane Cmmn:Im

N = constant
Oy Qo o s e o e e i
//
B4
P Qo o Al e = —, /
]
o /.
—————— — d % / ]
A \( ! |
~ /| |
H \\\ | |
D ~ !
~ |
“Gm 1 N |
<o < o O
"°n Oap 0 |0.- Typ O
! i
anni
!
' s
1 Y,
| .
y —4)-—0,' !
| | |
* |
! |
; L ot b 3 i £_-1

Modified Goodman range-of-stress diagram for fatigue failure in N cycles.
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o, = alternating stress amplitude
Om = mean stress

Omaz =0m + 04

Omin =0m — 0q
Om : mean stress
S« : ultimate strength
Sn : fatigue strength at N cycle
Sy : yielding strength

e Failure Prediction Equations :
Omes —Om 2> SN, for (SN—S,)S_U".SO

amcz-(l"r)am > Sn, forosdms(;s("l—__f;vl

Omaz 2 Sy’ for Som < Sy

where r = Sy /S,

¢ Reliability Considerations :
P =P, [Sy <0a—0m], for — Sy, <om < (Sn— Sy)
Py =P [Sy <a,), for(SN—S5y)<om<0

Py =P.[SN <rom +0,, for0<o,< DR

Pf=Pr[sy<Um+aa]a fOt(;S;!I——:'?SO’mSS'

Note: For reliability analysis, let all parameters be random variables. Formulate

g-function
9=S5y—(0a—0m)

g=S~—a.
g=SN—(rom +07,)
9=Sy—(om +7a)
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Numerically, use AMVFO to estimate Py = Fy =0
¢ Reference

[1] Collins, J. A., Failure of Materials in Mechanical Design,
John Wiley & Sons, 1981.
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C-4 The General S — N (Non-Linear) Representation of
Fatigue Strength; Constant and Variable Amplitude Stress

Case C-1 summarized the characteristic S — /N curve, linear in log-log space.
But sometimes fatigue strength data is non-linear. This is the case for strain-cycled
data (see Case L-2). An example is shown in Fig. 1. Possible models are,

k
log N = Ay + ZA.-e"'

im}

(1)

k
log N = Ao + ) _ Ai(log €)™
i=1

A; and a; are empirical constants of material

(2)

log € |or log S, (see note)]

log N
Fig. 1. Non-Linear S — N Relations.

Note: “Pseudo-stress,” S, = Ee is often plotted even though the

material is in the plastic range and S, is not equal to the
stress.

For a reliability analysis, it would be necessary to express the parameters as

random variables; as a practical matter, the scatter in data might be represented
by only one or two random variables.

Other examples of non-linear fatigue strength data are shown in Fig. 2 and
Fig. 3. Fig. 2 is a typical description of fatigue behavior given in MIL-HDBK-5B
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Fig. 2. Typical constant-life diagram for fatigue behavior of various
wrought products of 2024-T4 aluminum alloy.
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Fig. 3.
Best-fit S/ N curves for noiched, K, = 2.0, 2024-T3 aluminum alloy sheet
longiiudinal direction.
Product Form: Bare sheet, 0.090 inch Test Parameters:

- . . Loading - Axial
Properties: TUS.ksi TYS,ksi Temp., F Frequency - 1100 to 1800 cpm

73 54 RT Temperature - RT
(unnotched) Environment - Air
73 - RT

(notched K, No. of Heats/Lots: Not specified

= 2.0)
Equivaient Stress Equation:

Log N¢=9.2-3.33 log (Seq - 12.3)

Seq = Srax (l_R)O.“

Standard Error of Estimate = 0.27
Standard Deviation in Life = 0.89
R1=z 914

Sampie Size= 113
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for various materials. Note that mean stress and stress concentration effects are
included. The “newer” representation of fatigue strength is that of MIL-HDBK-5E.
The S — N curve is plotted as maximum stress versus fatigue life, with the mean
stress specified as illustrated in Fig. 3. Note that in Fig. 3, the non-linear model is

of the form,
logN = Ao — Ay log(S - Az) (3)

where the A; are empirical constants of the material.
e For variable amplitude stress, Miner’s damage rule (assuming no sequence
effects) is used for the representation. The variable amplitude stress process
is represented in block loading as follows:

number of const. amp.

Block applied cycles  stress level
1 na 51
na S,
3 n3 S3
k ng Sk

The accumulated damage is,

..
i
-

S
Il

-
[S

(4)

ng

7 N(Si)

!
™M~
>

where
D : accumulated damage factor

D; : damage factor due to each block loading
N(S;) : number of cycles to failure for that

. gtres level and mean value

¢ Reliability Considerations:

1. Failure events are:
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a. [N < Ny] for constant amplitude stress process; where Nj is design
life.

b. [D > A] for variable amplitude stress process; where A is damage at
failure.

2. Probability of failure:

a. Py =Pr[N < Ny}

b. Pf = Pl‘[D > A]
Parameters associated with N and D, and Ny, A may all be ran-
dom variables. The reliability analysis can be made using Wu/FPI or
AMVFO.

¢ References:

[1] Bannantine, J. A., Comer, J. J., and Handrock, J. L., Fundamentals of

Metal Fatigue Analysis, Prentice-Hall, 1990.
[2] U.S. Department of Defense, MIL-HDBK-5.
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C-5 Characteristic S - N Curve
Variable Amplitude Stresses

o Fatigue damage
D = ZE[s™]

Parameters :
Fatigue damage, D
Total number of cycles, n
Fatigue strength coefficient, A
Fatigue strength exponent, m
Applied stress range, S
(E[-] denotes the expected value)

e Assumptions:
1. Miner’s rule applies. (No stress sequence effects)
. Basic fatigue curve is NS™ = A. (no endurance limit)

Stationary and zero mean stress processes.

Lol o

Time of application of stress process is T.

o

¢ Information obtained from W( f)

ke, moment of W(f), mx = [5° F*W(f)df

root-mean-square of the process, o = \/mg

expected rate of zero crossing with (+) slope, ng = \/m
expected rate of peaks, n, = \/174/_m:

irregularity factor, a = no/n,

spectral width parameter, ¢ = vi—a?

BRI o

o Case A : Stress process is stationary, Gaussian, and parrow band.

Probability density function of stress range Sgr

2
fse(r) = #e-f?’ for 0<r<oo
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Fatigue damage factor
Dyp = :—;'(2\/5‘7)"'11(';‘l +1)

in which I'(-) denotes gamma function. Here A is based on stress range. If
A is based on amplitude, use (V20)™ to replace (2v20)™.
o Case B : Stress process is stationary, Gaussian, and wide band.

1. Equivalent narrow band approximation (Wirsching and Light, 1979)
Dwp = A(m,€)D.q NB

where

D.,nB = %2(2\/50')'"]:‘(% +1)

A(m, €) = a(m) + [1 — a(m)|(1 — &)¥™
a(m) = 0.926 — 0.033m
Hm) = —2.323 + 1.587Tm

2. Equivalent narrow band approximation (Ortiz and Chen, 1987)

Dwp = A¢Deg,NB

where

k

A = &

T8

B = [2E
momH.g
2.0

k= m0-86

3. Local range cycle counting (Ortiz, 1985)

Dwsp = 2%(2\/500)"‘1"(%1 +1)

e Mean stress effect
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If the stress process has a non-zero mean, replace A by A°. Using the Good-

man correction

. _ __‘2_'2'"
A= A=

where Ay is obtained from zero mean test; Sy, is the mean stress; and S, is
the ultimate strength of the material.

o Reliability Consideration :
1. The event of failure is [D > A] where A is damage at failure, in general a
random variable(4].
2. The probability of failure is

P; = P,[D > 4]

where D = D(A,m, S,n, W) all of which could be random. Obtain solution
by Wu/FPI or AMVFO.

¢ References :

[1] Ortiz, K. and Chen, N.K.,“Fatigue Damage Prediction for Stationary Wide-
band Random Stresses,” ICASP 5, Fifth International Conference on Ap-
plications of Statistics and Probability in Soil and Structural Engineering,
Vancouver, Canada, May 1987.

[2) Wirsching, P. H. and Light, M. C., “Fatigue Under Wide Band Random
Stresses,” Journal of the Structural Division, ASCE, Vol. 108, No. ST7, pp.
1593-1607, 1979.

[3] Ortiz, K., “On the Stochastic Modeling of Fatigue Crack Growth,” Stanford
Ph. D. Dissertation, 1985.

[4] Wirsching, P. H., “Fatigue Reliability for Offshore Structures,” Journal of
Structural Engineering, vol. 110, No. 10, Oct. 1984.
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C-6 Characteristic S-N Curve With No Endurance Limit; Variable Am-
plitude Stresses Including Sequence Effects; General Variable Am-
plitude Stress; Stationary Gaussian Processes Including Both Nar-
row Band And Wide Band; Mean Stress.

e This case of fatigue models, which accounts for variable amplitude stresses
including sequence effects in a characteristic S — N format, is still under
review (see also Case F-5). In practice, sequence effects are ignored in life

prediction estimates in most application.

121



C-7 Multi-Linear S — N Curve
(Under Variable Amplitude Stress)

¢ Basic Assumptions:
1. Stress sequence effects are negligible.
2. fs, the probability distribution function of S, is known.

3. Miner’s rule applies.

o Model for fatigue strength

S

S

Sl’—l ...... N

S D

log-log scale

So

NS™ = A,, for S0 <S< S
NS™ = A,, for 51$5<52
NS™ = A3, for 52SS<53

NS™* = Ag, for Si—1 <S5 < Sk

or, in general form,

NS™ = A, for S,‘_l < S < 5,‘ 1= 1,2,3,.. .
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where )
S : applied stress range or amplitude

A; : fatigue strength coefficient
m; : fatigue strength exponent
Let So = 0 and S = oo.

e Fatigue Damage, D [1]:
D = ZE[s™]

=% /n s™ fs(s)ds

where n is the number of cycles of the applied stress range, E[-] denotes the
expected value,  is the domain of stress range, and fs(s) is the probability
density function of S.

¢ For multi-linear S — N curve, fatigue damage, D can be expressed as [2]:

=ﬂ mi ﬂ ma vee ﬂ ma
D A,E[S ]+A,E[S 1+ +A..E[S ]

S S2 Sa
=ZL / s™ fs(s)ds + == s™ fs(s)ds + -+ =2 / s™* fs(s)ds
A1 Js, Az Js, Ax Js,_,

k . pSi
=y [s o™ fs(s)ds
) (1)

o Mean Stress Effects:
If om > 0, then the fatigue strength coefficients, A;, using Goodman correc-
tion, should be
Omim;
A.’ = A H 1 ———

-
where Ay; is the fatigue strength coefficient for the ith segment for zero mean
stress, and S, is the ultimate strength of the material.

¢ Reliability Consideration:
1. The failure event is [D > A] where A is damage at failure. In general, both

D and A are random variables.

123



2. The probability of failure is
Py =Pr[D > 4]
Reliability prediction can be made by Wu/FPI or AMVFO.

¢ Comments:

1. Existence of endurance limit.
If an endurance limit exists, then the linear section representing the
endurance limit is in the form of NS™* = A; with 4; = oo. Thus the
first term of Eq. 1. vanishes. Eq. 1. will not lose its generity with
the existence of the endurance limit.

2. Stress range is Weibull distributed. The Weibull distribution has the promise

of being a generic loading model for a wide variety of structures.

fs(s) = (%)(%)5-1 exp(—%)e 0<s,6,€< 0

where £ = Weibull shape parameter and § = Weibull scale parameter.
Substituting this pdf into Eq. 1. and making variable transformation, one
may obtain the fatigue damage, D:

D= 2—6"" /ﬂ t%i=1e=t gt

i=1 Zi-1

where 3
[RY3
z=(F)
my
i=—+1
HT7E

Note that the integrand is in the same form as that of Gamma function.
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[1] Wirsching, P. H. and Light, M. C., “Fatigue Under Wide Band Random

Stresses,” Journal of the Structural Division, ASCE, Vol. 108, No. ST7, pp.
1593-1607, 1979.
[2] Wirsching, P. H., “Considerations of Probability Based Fatigue Design for

Marine Structures,” Marine Structure, 1 (1988) 23-45.

[3] Wirsching, P. H., “Fatigue Reliability for Offshore Structures,” Journal of
Structural Engineering, vol. 110, No. 10, Oct. 1984.

[4] Collins, J. A., Failure of Materials in Mechanical Design,
John Wiley & Sons, 1981.
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L-1 The High Cycle Component of the General
Strain-Life Relationship
(Constant Amplitude Stress)

e Definition of high cycle fatigue :
There is no sharp transition from low cycle to high cycle fatigue. But typi-
cally, cycles to failure greater than 104 or 10° is considered to be high cycle
fatigue.

¢ General strain-life curve:
The strain amplitude ¢, corresponding to N cycles to failure is

€ = (ee)c + (ep)a

o (1)
= -Ei(zN)" + €4(2N)°
where
. . Ae .
€4 : strain amplitude, ¢, = > where Ae = strain range
(€.)a : elastic strain amplitude
(€p)a : plastic strain amplitude
E : Young’s modulus
oy : fatigue strength coefficient
b: fatigue strength exponent
¢y : fatigue ductility coefficient
c: fatigue ductility exponent
N : Cycles to failure
¢ In high cycle fatigue, the plastic strain is negligible. Thus
d'
! b
e = =(2N 2
ea = 22N (2)
But
S, = Ee, 3)
= o}(2Ny)? (
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Therefore, it is obtained .

_ 1,5t

o
where S, is the fatigue strength associated with NV cycles.
Note that Eq. 4 is exactly the same form as the basic fatigue relationship

(described in C-1)

NS§™=A (5)
where
1
m=-7 (6)
A=) )

¢ Reliability Consideration :

The event of failure is

1. [oa > Sa] where o, is the applied stress amplitude. In general, both
o, and S, are random variables.

2. [Ny < Ny where Ny is the intended service life.

The probability of failure is
1. Py = Po. > S.}
2. Py = P.[N < Ny

The reliability estimates can be solved by Wu/FPI or AMVFO.

e How to Account for Mean Stresses ?
Let o,, = applied mean stress

1. Morrow’s model [1]:

e = ()M (8)
Or, in another form
Ss = Ee, o
= (alf - am)(zN)b ®)
Ll Sa ¢
N—2(U'f—0m) (10)
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2. Manson and Halford model [2,3] :
!
- km m
€ = (E%)(?N)b (11)

where k., is the mean stress factor to be determined empirically. Express
the above equation in another form,

Sa = Ee¢,
,, (12)
= (a', — kmom)(2N)
1 Sa 3
N = Z(W) (13)
The Goodman correction can also be applied to these models. Adjust A, as
defined above,
A=A4,(1-22)" (14)
Se
where

1, .-
Ao=§("f) b

Ss = ultimate strength of material

¢ Reliability Consideration :

The event of failure is

1. [0a > S,] where o, is the applied stress amplitude. In general, both
o, and S, are random variables.

2. [N < Ny} where Nj is the intended service life.

The probability of failure is
1. Py = P[0, > S,]
2. Py = P.[N < Ny}

Obtain reliability estimations using Wu/FPI or AMVFO.

¢ How to account for stress concentrations (the notch effect)?

Stress concentration factor

(15)
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where
K, = stress concentration factor
o = local stress amplitude at notch root (point of stress concentration)

Snom = nominal stress amplitude

K,S.
E (16)
(@N)®

€qg =

I
|2

It is obtained
al
Se = -L(2N) (17
K,

— 1 S.K‘ *
V=37 ) (18)
But, a fatigue notch factor, K, is often erﬁployed in fatigue analysis. Fatigue
notch factor, Ky, is defined as the ratio of unnotched fatigue strength to
notched fatigue strength.

K= Supgotched (19)
Snotched

1. Relationship of K to K, by Peterson [3]:

Ki=1+4+(K¢—1)xgp
K.-1 (20)
1+¢

where a is a material constant dependent on strength and ductility,
determined from long life test data for notched and unnotched sam-

ples, and r is notch root radius.
2. Relationship of Ky to K by Neuber [4]:

Ky=1+(K—1)xqn

K1 (21)
=1 ———
* 14 /p/r
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where p is a material constant and related to the grain size of material.

Thus, the S; and N then are in the forms of
1. From Peterson :

I

Se= [—%, (eI (22)
+ qr
- 3B Ky @)
2. From Neuber :
S = [1—+:1!(:_L:-;1‘](2N)b (24)
[ (1 + —;)] ¢ (25)

where ¢p and qn are defined above.

¢ Comments :
1. For ferrous-based wrought metals, a is approximately by [5]:

300

(kﬂ)] x 107 in. (26)

= [s
or using the approximation (S, ~ 0.5 BHN)

300
= [53BEN
where BHN is Brinell Hardness Number. Thus,
a =~ 0.01 in. for normalized or annealed steels (BHN= 170).
a = 0.001 in. for highly hardened steels (BHN= 600).
a =2 0.0025 in. for quench and tempered steels (BHN= 360).
2. Typical values of p can be referred in Juvinall [6].

" x 1072 in. (27)

o Reliability Consideration :
The event of failure is

129



1. [04 > Sa] where o, is the applied stress amplitude. In general, both
are random variables.
2. [N < N,) where N is the designed service life.
The probability of failure is
1. Py = Plos > Sa]
2. Py = P,[N < Ny}
Reliability estimate can be solved by Wu/FPI or AMVFO.

e References :
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Warrendale, Pa., 1968, Sec. 3.2, pp. 21-29.

[2] Manson, S. S. and Halford, G. R., “Practical Implementation of the Double
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Fatigue Damage,” Int. J. Fract., Vol. 17, No. 2, 1981, pp. 169-172, R35-R42.

[3] Peterson, R.E., “Analytical Approach to Stress Concentration Effects in Air-
craft Materials,” Technical Report 59-507, U.S. Air Force — WADC Symp.
Fatigue Metals, Dayton, Ohio, 1959.

[4] Neuber, H.,Theory of Notch Stresses: Principle for Ezact Stress Calcula-
tions, Edwards, Ann Arbor, Mich., 1946.

[5] Society of Automotive Engineers, Fatigue Design Handbook, Vol. 4, SAE,
Warrendale, Pa., 1968, p.29.

[6] Juvinall, R. C., Engineering Considerations of Stress, Strain and Sirength,
McGraw-Hill, New York, 1967.

[7) Society of Automotive Engineers, Fatigue Design Handbook, AE-10, SAE,
Warrendale, Pa., 1988.
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L-2 The General Strain-Life Relationship
and
Low Cycle Fatigue
(Constant Amplitude Stresses)

¢ Basic Assumptions:
1. Fatigue crack initiation is defined as “fatigue failure.”
2. The external loading is constant amplitude.

This method of life prediction is also used by turbine engine manufac-
turers. Clearly, frequency of loading is an important factor. Generally,
as a practical matter, cycle life IV is evaluated using a computer code.
One code is Program BROSE, developed at the University of Arizona
(by Y.-T. Wu).

e The general strain-life relationship defines fatigue strength for a cycle life N.

€a = (€e)a + (e,),,

= Z@N) + € (2N (1)

€, : strain amplitude, ¢, = %, where Ae = strain range.
(€e)a : elastic strain amplitude.
(€p)a : plastic strain amplitude.

E : Young’s modulus

o}y : fatigue strength coefficient, to be determined from fatigue test.

b: fatigue strength exponent, to be determined from fatigue test.

‘ : fatigue ductility coefficient, to be determined from fatigue test.
c : fatigue ductility exponent, to be determined from fatigue test.

N : cycles to failure
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(i) Pseudo fatigue strength associated with N cycles, S, :

S, = Eeq
= o}(2N)* + E¢j(2N)°
(ii) Cycles to failure for a given strain range:

The expression for strength is difficult to invert. This approximate
expression is due to Manson, et al., (1).

_ ._Ai sle | (D€ 1/h1/x

N =Nr[(z) +(z)"] (2)
where
Nr (Transition life) = 0_5(50;2)7.’: (3)
1

Aer (Transition strain) = 2(¢))®7 (2£) &P (4)

f E

A A

z = ezp{P(in A; )2+ Q(zn-AT‘T) + ln[—0.889c(§)"°'3°]} (5)
= —0.001277(§)2 + 0.03893(%) —0.0927 (6)
Q= 0.004176(%)2 -~ 0.13500(%) +0.2309 (7)

o Comments:
1. The empirical constants, i.e. a}, b, e}, and c are determined by a
fatigue test, but because fatigue testing is expensive, these constants
can be estimated from monotonic tests and cyclic ¢—e curve as follows:
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where )
oy : true stress at fracture of monotonic test.

n': cyclic strain hardening exponent.
K': cyclic strength coefficient.
2. Some rules of thumb:

c.=%=o.01 at N =103
a,:% at N =5 x 10°

3. b varies from -0.05 to -0.12 with a typical average of -0.085, while ¢
varies from -0.5 to -0.8 with typical value -0.6.

¢ Manson’s method of universal slope [2]:
This is a more primitive and earlier form of the general strain-life relation-

ship,
€a = 1.75(%)N-°-12 +0.5(ep)0 N0
where S, is the ultimate strength of the material, and ¢ is the true strain

at fracture of monotonic test.

(i) Fatigue strength associated with N cycles, S, :

S, = Ee,
= 1.755.N7%1? + 0.5E(ef)? N0 €

(i1) Cycles to failure cannot be expressed explicitly, but can be solved numeri-
cally.
e Comment:

The universal slopes method may be a first approximation for the fully
reversed strain-life curve for unnotched smooth specimens, based on

monotonic tensile properties.

o Statistical Considerations of Fatigue Data

The method of analyzing strain-life fatigue data for the purpose of
reliability analysis and design is described in Ref. 3 and 4. Basically,
the concept is to fix the exponents b and c as constants equal to the
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least squares estimators and “lump” the uncertainty into o and €,
which are treated as random variables.

¢ Reliability Consideration :
The event of failure is :
1. [e > e,] where ¢ is the strain amplitude at the notch. In general, both

¢ and ¢, are random variables.
2. [N < No] where Nj is the intended service life.
The probability of failure is
1. Py = P[e > ¢
2. Py = P,[N < Ny}
Numerically, the reliability estimates can be solved by using Wu/FPI or
AMVFO [5].

o Calculation of the Strain Amplitude at the Notch. [see Ref. 6 and 7]
1. Use a finite element program capable of computing the stress and strain at

a notch under plastic deformation.
2. Neuber’s rule [8): An approximate method built into local strain analysis

computer codes for calculating N.

oe= K2onen

_ (Kto'n)2
- E

where
o : local stress amplitude at notch root.

¢ : local strain amplitude at notch root.
K, : stress concentration factor.
on : nominal stress amplitude.

€n : nominal strain amplitude.

3. Seeger and Heuler’s version of Neuber’s rule [9]:

oe= K,zo"e'
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where
_ (94) at onset of general yielding

K, =
(9n) at first notch yielding
=2 _
oy/ K
in which o, is the particular value of & corresponding to fully plastic behavior
for an ideal elastic, perfectly plastic material having the same yield strength,
Oy, as the real (strain hardening) material. Also

ot ==o
b n
K,

and the point (¢*,€*) lies on the cyclic o — € curve, i.e.,
. O %\ 4
¢ ==+(%)

4. Topper’s version of Neuber’s rule [10]:

ye = Hsn)
E

in which K is the fatigue notch factor.

Applications of Neuber’s rule and its versions require the solution which

satisfies both rule (or version) and cyclic 0 — € curve

where
K' = cyclic strength coefficient.

n' = cyclic strain hardening exponent.

With given o, the state of o — ¢ can be solved numerically; hence, one may

estimate cycles to failure using Eq(2).

e Mean Stress Effects:
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1. Morrow’s equation [12]:
ol —
€ = -t-Eﬂ(zN)' +€,(2N)° (8)

2. Manson and Halford’s equation [13]:

t = km " —km
e = LR 0N) 4 ¢ (FL2) 2N (9)
b4
The inversion formula of this equation is
A€ 3/ Ae \z/b1/x
N=Ne((Z2)" + (507 (10)
where ok A
" -4 _ mJ0 -
NT = 0'5[(2NT) EACT] (11)
km is mean stress factor; and Nr, Aer, z, P and Q are defined in Eqgs. (3)
through (7).

o Mean Stress Relaxation:

Mean stress effects are seen predominantly at longer lives. At high
strain amplitudes (0.5% to 1% or above) where plastic strains are
significant, mean stress relaxation occurs and the mean stress tends
toward zero. Mean stress relaxation can occur in materials that are
cyclically stable.
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L-3 Low Cycle Fatigue Under Random Stresses

¢ Basic Assumptions:
1. Linear damage accumulation rule applies. (no sequence effects)
2. Stress information is obtained by
(i) actual record.
(ii) simulation based on the power spectral density function of stress..
3. Material's cyclic o —¢ is given. The fatigue strength,0, €}, b, and c are given.

¢ Procedure:
1. Obtain the strain history by computer analysis, which automates local strain
analysis. (e.g. Program BROSE at the University of Arizona.) Example is
shown in Fig. 1. Note the development of hysteresis loops in Fig. 2.

Strain
0

——

¢ <]

Time

Fig. 1. Example of strain history. Fig. 2. The hysteresis loops.

2. Using the rainflow cycle counting method, one may determine cycles and
the associated mean stresses, 0o, and strain ranges, Ae from the hysteresis
loops (Fig. 2). In this example, cycles are identified as A-D, B-C, E-F, and
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G-H with the strain ranges, A¢;, A¢y, A€z and Aey, respectively. The mean
stress are oy, , 0o,, J0,, and 0o, respectively.
3. For each cycle, i, fatigue life, V;, can be determined by a strain-life equation
that incorporates mean stress effects, such as
i) Morrow’s equation [1}:

Ag;
2

ii) Manson and Halford’s equation [2]:

I —
= E"“‘ (2N:)* + €,(2N;)* (1)

A2e,- _ ay —;mao‘ (2N + 6}(02 -al’;...ao.- )c/b(2N._)c 2)
where
Ag, : strain range of the ith cycle.
E : Young’s modulus.
oy : fatigue strength coefficient.
: mean stress of the ith cycle.
b: fatigue strength exponent.
€; : fatigue ductility coefficient.
c: fatigue ductility exponent.
ks : mean stress factor.

N; : cycles to failure coresponding to the ith load cycle.

4. Total Miner’s fatigue damage, D, then is

1
D=zm (3)

=1

where k is the number of cycles determined from the hysteresis loop.

¢ Reliability Considerations:
1. The failure event is [D > A] where A is damage at failure. A can be modeled
as a random variable.
2. The probability of failure is
P.[D > A]
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Since the fatigue properties o},€,... are random variables, a program to
compute D is required. The reliability calculation can be made using AMVFO.

e References :

(1] Morrow, J., Fatigue Design Handbook, Advances in Engineering, Vol. 4,
SAE, Warrendale, Pa., 1968, Sec. 3.2, pp. 21-29.

[2] Manson, S. S. and Halford, G. R., “Practical Implementation of the Double
Linear Damage Rule and Damage Curve Approach for Treating Cumulative
Fatigue Damage,” Int. J. Fract Vol. 17, No. 2 1981, pp.169-172, R35-R42

[3] Dowling, N. E., De : ‘ atig ' et
under review for publication as text; VPI Blacksburg, VA 24060.

[4] Society of Automotive Engineers, Fatigue Design Handbook, AE-10, SAE,
Warrendale, Pa., 1988.

[5] Fuch, H. O., and Stephens, R. I., Metal Fatigue in Engineering, John Wiley
& Sons, 1978.
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F-1 Fatigue Crack Propagation
(Constant Amplitude Stresses)

e Assumptions :
1. No threshold on stress intensity level.
2. Constant amplitude stress. (let S = Stress range)
3. No creep. (high temperature effects)
4. The Paris crack growth law applies.

e Fatigue Crack Growth Law (FCGL)

da m
N = C(AK)

= C[Y(a)SVwa|™

(1)

Parameters :

1. Material empirical constants, C & m.

Geometric Correction Factor, Y(a).

Applied stress range, S.

Initial crack length, a,.

Failure crack length, ay, chosen

(a) by engineering judgement.

(b) critical crack length, i.e., ay = K2?/(xY?25?) where K, is fracture
toughness.

Sk woN

¢ Case A : Cycles to failure

1 as da
N = G5 L, T @

e Case B : Cycles to failure (assume geometry factor is constant)

2a, ¥ — gy F)

Ny=3z m)C(Y S/7)™

(3)
e Case C : Cycles to failure (assume constant geometry factor and ap << a 1)

Ny=—5— 2
ag (m-=2)C(YS/x)m

(4)
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¢ Reliability Considerations :
1. The event of failure is [N < Nq], where No is the design life.
2. The probability of failure is

where N = N(ao,a5,C,m,Y,S), all of which can be random variables. Ob-

tain solution using Wu/FPI or AMVFO.

¢ Consideration of Mean Stress Effect
Define stress ratio R

= Rones
Ysmin\/”—a
- Ysmsz\/"ﬁ
Smin
Smaz

R is constant since constant amplitude stress.

1. Forman’s equation (1] :

da ____CAK™
dN = (1-RK.-AK

a. Cycles to failure

Y (1- R)K. - AK
N—/. CAK)™ da

b. Cycles to failure (assume constant geometry factor)

3-m

_0-REq P -aF) e -aF
(ZF-DCYsym™  (BR)C(YSymm-!

2. Walker’s equation {2] :

d
E‘:f- =C[(1 - R)*Kmaz]™ k is an empirical constant
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a. Cycles to failure

1 s da
Ny = C[Smez(1— R)*/x]™ /.‘, [Y'(a)V/a]™ (10)

b. Cycles to failure (assume constant geometry factor)

1"? - a! -3
= 11
V= (m—nartmmuwmﬂrw (11)
3. equation suggested by Rolfe and Barsom [3] :
:; = C[(1 - R)*AK]™ k is an empirical constant (12)
a. Cycles to failure
1 o da
_ __ [ __da__ 13
N = SRR ., TV 49
b. Cycles to failure (assume constant geometry factor)
a;“? a7
N= L (14)

(§ - DC(1 - R)*™(YSym)™

¢ Comment:
1. Stress ratio data should be available to fit the empirical constant k

o Reliability Considerations :
1. The event of failure is [N < Ng], where Ny is the design life.
2. The probabiity of failure is

P; = P,[N < N

where N = N(ag,ay,C,k,m,Y,S, R, K,), all of which can be random vari-
ables. Obtain solution using Wu/FPI or AMVFO.

e References :

[1] Fuch, H. O., and Stephens, R. I., _Metal Fatigue in Engineering, John Wiley
& Sons, 1978.

[2] Walker, K., “The Effect of Stress Ratio during Crack Propagation and Fa-
tigue for 2024-T3 and 7075-T6 Aluminum,” ASTM STP 462, 1970, p. 1.

[3] Rolfe, S. T. and Barsom, J. M., Fracture and Fatigue Control in Structures,
Prentice-Hall, 1977

(4] Broke, D., Elementary Engineering Fracture Mechanics, Martinus Nijhoff Pub-
lishers, The Hague, 1984

[5] Dowling, N. E., De ] gue : '
under review for pubhcatxon as text VPI Blacksbury, VA 24060.
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F-2 Fatigue Crack Propagation
(Variable Amplitude Stresses)

e Assumptions :
1. No threshold on stress intensity level.
2. The long term statistical distribution of fatigue stresses is known.
3. The Paris crack growth law applies.
4. Sequence effects are negligible.
5. No mean stress effect associated with individual stress cycles.

e Fatigue Crack Growth Law (FCGL)

da m
75 = C(AK)

= ClY(a)SVxa]™

(1)

Parameters :

1. Material empirical constants, Paris coefficient and exponent, C & m.
2. Geometry Correction Factor, Y(a).

3. The distribution parameters of applied stress range, S.

4. Initial crack length, ao.

Equation (1) may be integrated in the form as follows (1,2]

[ sman= " e @

where ay is crack length after N cycles.
Because of the variable amplitude, the stress cycles are discrete, and equation (2)

can be written as,

N
m _ d da
.-2:15‘ - / Cl¥(a)v/xa™ (3)

In general, a numerical procedure is required to compute an.

¢ Reliability Considerations :
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1. This problem can be thought of as a first passage problem. Failure is assumed
to occur the first time that crack length exceeds a., a critical crack size

8. < an (4)

The critical crack size is chosen
a) by engineering judgement.
b) by a. = K3?/(xY2S?) where K. is the fracture toughness of the ma-
terial.
2. The probability of failure is

Py = Priac < an] (5)

where ay = an(ao,C,m,Y,S), all of which can be random variables. Reli-
ablity estimate can be obtained using Wu/FPI or AMVFO.

¢ In the case where stress is a stationary random process
Rewrite equation (3) as

1 [o¥ dz 1 e
N J,, Cl¥(a)/xz)™ =N;S‘ (6)

E(S™)
where E(-) denotes expected value.
For example, let S be Weibull distributed; its probability density function is
S\ ¢- s
s =) an(-3)¢ o< bE<wo

where £ = Weibull shape parameter and § = Weibull scale parameter. It can
be shown that E(S™) is,

E(S™) =/ s™ fs(s)ds
°o (7)
=6"T(+ +1)
§
Define Sy by the expression,

Pr(S > So) = (8)

1
N
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that is, the return period of (S > So) is N. It follows from the definition of

So that,
E(S™) = SP(log N)"?l‘(—'?- +1)

= [So(log zsr)-ifr'/"'(-'él +1))" (9)

= (Seq)™
Seq is called the equivalent stress range.
Equation (4) is now in the form of

N dz
vsi= [, ewraver 10

Note that this form is identical to the constant amplitude form. This is the fracture
mechanics equivalent of Miner’s rule.

o References :

[1] Madsen, H. O., Skjong, R., and Kirkemo, F., “Probabilistic Fatigue Analysis
of Offshore Structures — Reliability Updating Through Inspection Results,”
A.S. Veritas, Hovik, Norway.

[2] Perng, Horng-Linn, “Damage Accumulation in Random Loads,” Ph. D. Dis-
sertation, The University of Arizona, 1989.

(3] Wirsching, P. H., “Considerations of Probability Based Fatigue Design for
Marine Structures,” Marige Structure, 1 (1988) 23-45.

(4] Eatigue Handbook, Offshore Steel Structures , Ed., A. Almar-Wess, Tapir
Publisher, 1985.

(5] Collins, J. A., Failure of Materials in Mechanical Design,

John Wiley & Sons, 1981.
[6] Wirsching, P. H., “Fatigue Reliability for Offshore Structures,” Journal of

Structural Engineering, Vol. 110, No. 10, Oct. 1984.
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F-3 Fatigue Crack Propagation
(Variable Amplitude Stress with a
Threshold Stress Intensity Factor)

e Assumptions :
1. Threshold stress intensity factor AK,s exists.
The Paris law applies in region II and extends through region III.
Sequence effects are negligible.
The long term statistical distribution of fatigue stress is known.
Mean stress effects are ignored, although they could be introduced through
Paris coefficient, C, and AK;,.

DA ol I

e Fatigue Crack Growth Law (FCGL)

da m
<% = C(AK)

= C[Y(a)Sv/xa]™

(1)

Parameters :
1. Material empirical constants, Paris coefficient, C, and Paris exponent,
m.
2. Geometry Correction Factor, Y(a).
3. The distribution parameters of applied stress range, S.
4. Initial crack length, ag.

o Consideration of the threshold stress intensity factor [1,2]:
AKy; is defined as a stress intensity value below which the crack will not
grow. Thus, a threshold stress range level is

AKqy
Y(a)/ma

Crack growth occurs for a stress cycle only if S > So(a). The truncated
density function of damaging stress cycles then is

So(a) = (2)

hs(s,a) = {gs(s)/Q(a) for Sp < s < @ (3)

otherwise.

147



where

Q(a) = Pr{S > So(a)]
o0
= fs(s)ds
So(s)
and fs(s) is the probability density function of the applied stress range, S.
Consider the Paris fatigue crack growth law using the characteristic stress
approach,

(4)

:—;‘- = C[Y (a)S4.(a)v/ma]™ (5)
where
N4 = number of damaging cycles only
S.q = equivalent stress for damaging cycles only.
[Sde(a)]™ = E(S™)
= /T)s"‘hs(s)da
T e (6)
= W)- - s™ fs(s)ds
= [So(a)]™/Q(a)
Because [2]
da 1 da

dN: = Qla)aN @

Then, it follows that,

da = m
N = C[Y(a)So(a)v7a (8)
Define the threshold factor as,
= [50(0)]"'
G(a) oo™ (9)

where S.q is the Miner’s equivalent stress range derived in section F-2.

It follows from equation (9) of section F-2

1 /v da

NSS:_C: e Gl(a)[Y(a)yma]™

(10)
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In general, a numerical procedure is required to compute ay, crack size after
life N. A computer program has been developed at the University of Arizona
to compute N as a function of ay and ay as a function of N.

¢ Reliability Congiderations :
1. This problem can be thought of as a first passage problem. Failure is assumed
to occur the first time that crack length exceeds a., a critical crack size

Failure = [a. < an]

The critical crack size is chosen
(a) by engineering judgement.
(b) by a. = K?/(rY?25?), where K, is the fracture toughness of the ma-
terial.
2. The probability of failure is

Ps; = Prla. < an] (11)

where ay = an(ap,C,m,Y,S), all of which can be random variables. Reli-
ablity estimate can be obtained using Wu/FPI or AMVFO.

¢ References :
[1] Wirsching, P. H., “Considerations of Probability Based Fatigue Design for
Marine Structures,” Marine Structure, 1 (1988) 23-45.
[2] Wirsching, P. H., “Fatigue Reliability for Offshore Structures,” Journal of
Structural Fngineering, Vol. 110, No. 10, Oct. 1984.
(3] Fatigue Handbook, Qffshore Steel Structures , Ed., A. Almar-Wess, Tapir

Publisher, 1985.

[4] Perng, Horng-Linn, “Damage Accumulation in Random Loads,” Ph. D. Dis-
sertation, The University of Arizona, 1989.

[5] Madsen, H. O., Skjong, R., and Kirkemo, F., “Probabilistic Fatigue Analysis
of Offshore Structures — Reliability Updating Through Inspection Results,”
A.S. Veritas, Hovik, Norway.

(6] Collins, J. A., Failure of Materials in Mechanical Design, Wiley, 1981.
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F-4 Other Models to Describe
Fatigue Crack Propagation

e Paris law is a popular model and is presented in sections F-1, F2, and F3.
Other empirical models that have been proposed to describe fatigue crack

propagation are listed as follows.

%‘\‘,— = C,AK” (1)

o Plg—g%—%{-';—z- 2)
da/ldN = (Aj.rt'l)m A2 [EI%?*T -C] (3)
B8 o C(Kmas)™ [(Kmas + K1 = Regg) + K]’ (4)

loB10 () = P, exp(Py log AK) + Py exp(Ps log AK) + P (5)
logyq (;—I‘:,-) — C, sinh[Cy(log AK + C3)] + Cy (6)
:—;—H(u-e)[ 1n1-—-)]"" (7)

o — explfs + Bi(log AK) + Aa(log AK)? + Br(log AKP]  (8)

e Comments on these models is provided in the following :
1. Equation (1) is a modified Paris Law in which

AK.p; — AK

AR = T K R

(9)
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and
Kejf':(l—Po/Pmaz)Kmaz (10)

The ratio Py/Pma. is calculated from a crack closure model under plane-
strain conditions.

. In equation (2), AK: and AK, are constants defining the asymptotes at low
and high AK, respectively. P, shifts the (log-log) curve up or down, and P,
and P; influence curvature.

. Equation (3) is another form of the three-component model first proposed
by Hudak, et al., [1] for a constant-load ratio

1 _ Al AQ A?
dajdN ~ (AK)™ T (AR K= R

(11)

where A, A2,n1,n,, and K, are fitting constants, and R is the stress ratio.
. Equation (5) is similar to equation (6), except that different curvatures in the
upper and lower regions are allowed through the choice of the pairs P, P; and
P3, P;. The coefficient shifts the entire curve up or down. These coefficients
are determined through curve fitting to the fatigue crack growth rate data.
. Equation (7) was the four-parameter Weibull equation, which is actually
a three-parameter Weibull cumulative distribution function with a fourth
parameter added to normalize the stress-intensity variable. The details are
referred to [3].

. Equation (8) is suggested by Kung [5] to describe the crack growth behavior.
Iflet Y = log(da/dN), X =log AR, then the equation is a cubic polynomial
equation. The advantage of this model is the exclusion of nonlinear terms
proposed in the other models.

Reliability Consideration
. In general, a special numerical procedure is required to compute either crack
length an after a specified life, say service life, N,, or the life N when a
critical crack length, a. is reached. The critical crack length a. is normally
chosen

a) by engineering decision

b) by a. = K2/(xY?25?) In the former case, failure occurs when ay

exceedes a., while in the latter case, N < N,.
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2.

Thus, the probability of failure is
Py = Prla. < an] (12)

or

Py =P1[N < N,] (13)

all of which can be random variables. Reliability analysis can be done using
Wu/FPI or AMVFO.

o References :
(1] Hudak, S. J., Jr., Saxena, A., Bucci, R. J. and Malcom, R. C., “Development

2]

(3]

(4]

(5]

of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate
Data,” Technical Report AFML-TR-78-40, Air Force Material Laboratory,
Ohio, May, 1978.

Saxena, A. and S. J. Hudak, Jr., “Evaluation of the Three-Component Model
for Representing Wide-Range Fatigue Crack Growth Rate Data,” Journal of
Testing and Evaluation, JTEVA, Vol. 8, No. 3, May 1980, pp- 113-118.
Miller, M. S. and Gallagher, J. P., “An Analysis of Several Fatigue Crack
Growth Rate (FCGR) Descriptions,” Fatigue Crack Growth Measurement
and Data Analysis, ASTM STP 738, S. J. Hudak, Jr. and R. J. Bucci, Eds.,
American Society for Testing and Materials, 1981, pp. 205-251.

Yang, J. N., Salivar, G. C. and Annis, C. G., Jr,, “Statistical Modeling of
Fatigue-Crack Growth In A Nickel-Base Superalloy,” Engineering Fracture
Mechanics, Vol. 18, No. 2, pp. 257-270, 1983.

Kung, C. J., “Objective Comparisons of Various Fatigue Crack Growth Laws
Based On Time Series Analysis Criteria,” Master Report, The University of
Arizona, 1988.
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F-5 Crack Growth Model for
Variable Amplitude Stresses
(Sequence Effects are Significant)

e Crack-tip plasticity models :
Assumptions :
1. Load interaction effects (crack growth retardation) occur due to the large
plastic zone developed during the overload.
2. Load interaction effects remain active as long as the crack-tip plastic zone
developed on the following cycles remains within the plastic zone of the
overload.

8, Wheeler model][1] :

an = a0 + ) _(Cp)if(AK);

i=1
Parameters
a, = crack length after n cycles of load application.
ao = initial crack length.
f(AK) = the fatigue crack growth law, e.g., Paris law.
Cp, = an empirical retardation parameter.

How is C, defined ?

= Tyi P e
(Cp)t = [(GOL FroL) - ai] if a; + ry; < @aoL +roL

(Cp)i=1 ifai+ry, 2aoL+roL

where
ry; = the plastic zone size due to the ith loading cycle.

_1_ Kmaz.- )2

v = px* S,
B =2 for plane stress case

B =6 for plane strain case
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aor = the crack length at a high tensile load application.
roL = the plastic zone size caused by the high load.

1 Kot\2
ror = 72 (5-)

g =2 for plane stress case
g =6 for plane strain case

a; = crack length at ith loading cycle.
p = an empirical shaping exponent to be determined experimentally.

e Comments:
1. A major disadvantage of this model is the empirical shaping exponent,
p-
2. This model neglects the counteracting effect of a negative peak load
in crack retardation.

b. Willenborg model(2] :

The procedure of this model is outlined below

1. Determine a,:
ap =ag +roL

=ao+-ﬂ—1r' s,

2. Determine the required stress, (req)i:
(Kre )i 2
ap = ai+ 7= [—57"—]

_1_ [Y(a)("'rcq)iﬁa?] 2
fr Sy

=a"

(o )i = SL ﬂ(ap—ai)
T4t " Y(a) a;

3. Detremine the compressive self-stress, (Ocomp)i:
(acomp)i = (areq)i - (Umu)i

where (0 maz )i is the maximum stress occurring at the ith cycle.
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4. Determine an “effective” stress range, Ao¢:

(a:n‘z)i = (amcz)i - (aeomp)i

= 2(Umu:)i - (areq)i

(arem'n)l' = (0‘,,“".).' - (acomp)i
= (amcs)i + (Omin)i — (areq)i
If either of these “effective” stresses is less than zero, it is set equal

to zero.
AU: = (a:nl:)i - (atenin)i

5. Determine (AK,.ss): [and (R.zy): if necessary]:
(AK.gp)i = Y(a)Ao; /ma;

(K min):ff
(Kmaz)i'
6. Determine the crack length after n cycles of loading, a,:

(Regr)i =

an =ao+ Y _ f(AKesy)i

i=]

where f(-) denotes the fatigue crack growth law, e.g., Paris law.

e Comments :

1. a, is the sum of the initial crack length (the crack length when the
overload was applied) and the plastic zone due to the overload. Crack
growth retardation will decrease until the sum of current crack length,
a;, and its associated plastic zone, r,,, is equal to or large than a,. In
other words, when the boundary of the current plastic zone touches
the boundary of the overload plastic zone, retardation ceases.

2. The required stress, (0,.q); is the stress required to produce a yield
zone, (rreq)i, whose boundary just touches the overload plastic zone
boundary.

3. The most significant difference between the Wheeler and Willenborg
models is that the Willenborg model uses only constant-amplitude
crack growth data and does not require a “shaping” exponent.
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¢ Crack Closure Model(3] :
Assume crack extension occurs only when the apphed stress is greater than

the crack opening stress, Sop.

da _

where
f(-) = fatigue crack gowth law, e.g., Paris law
AK.py = Kmaz — Kop
= (Smaz = Sop)V/maY (a)
= Smas(1 — CF)V/xaY (a)
CF = Correction Factor
= S

Sm.:

The procedure of this model is as follows:
1. Determine (AS.ss)i and consequently AK.ysys

(ASess)i = (Smaz)i — (Sop)i

2. Calculate Aa; 4
a
sai = (gy);
= f(AK.ys¢)i
3. Determine ai4;:
ai+1 = a; + Aag;
Repeat these steps until final crack length, say, an, exceeds some critical
crack length, say, ay.

e Comments:
1. Large computer programs with long run times are often required.
2. Good correlations have been obtained between predicted and experi-
mental results.
3. When Paris law is applied, the coefficient C must correspond to the
same closure level as the effective stress intensity factor term, AK.yy.
That 1s,

(dN) C(AKeff)m
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C‘
Um
where C* = crack growth coefficient obtained from constant ampli-

C =

tude stress range test.

U= AK.yy
AK
AKeff = Kmner — Kop
AK = Km.z - Kmin

The crack growth exponent,m, does not need to be modified to ac-
count for crack closure effects.

¢ Reliability Consideration :
1. The event of failure is [a, > ay], where a; is specified failure crack length
which might be a random variable.
2. The probability of failure is

Pf = P,.[a,. > a!]
Reliability estimate can be obtained using Wu/FPI or AMVFO.

e Computer Programs for Computing Life using Cycle-By-Cycle Counting :
1. NASA/FLAGRO, NASA Johnson

ASDGRO, Aeronatical Systems Division, WPAFB, OH

The Fracture Mechanic, American Society of Metals, 1986

Fast-2, Newman, J. C., NASA Langley.

CRACKS II. [5]

EFFGRO [6]

A o

¢ References :

[1] Wheeler, O. E., “Spectrum Loading and Crack Growth,” J. Basic Eng.,
Trans. ASME, Vol. D94, No. 1, 1972, pp. 181-186.

[2] Willenborg, J., Engle, R. M., and Wood, H. A., “A Crack Growth Retar-
dation Model Using An Effective Stress Concept,” AFFDL TM-71-1-FBR,
Jan. 1971.

(3] Elber, W., “The Significance of Fatigue Crack Closure,” Damage Tolerance
in Aircraft Structures, ASTM STP 486, 1971, p230.
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[4] Fuch, H. O., and Stephens, R. I, Metal Fatigue in Engincering, John Wiley

& Sons, 1978.
(5] Engle, R. M., “CRACKS II User Manual,” AFFDL TM-173-FBE, Aug.

1974.
(6] Chang, J. B., “Improved Methods for Predicting Spectrum Loading Ef-

fects,” Rockwell International, Los Angeles Division, First Quarterly Report,
NA078-491, May 1978.
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H-1 High Temperature Low Cycle Fatigue
(Synergistic Effects of Creep and Fatigue)
Linear and Elliptic Prediction Rules;
Constant Amplitude Stress

¢ Assumptions :
1. Creep behavior is controlled by the creep stress, op,.
2. Fatigue behavior is controlled by the stress amplitude, o,.
3. Isothermal conditions.

e Life Prediction Rules (Fig. 1):
Notation:
04: stress amplitude
on: fatigue strength at IV cycles
Om: creep stress
o.r: creep-limited static stress

dy‘

Alternating stress, o,

Cresp strem. o,

Fig. 1. Failure prediction diagram for combined creep
and fatigue under constant temperature conditions.

1. Linear prediction rule:
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Failure is predicted to occur under combined isothermal creep and fatigue if

=422 (1)
ON Oer

2. Elliptic prediction rule :
Failure is predicted to occur under combined isothermal creep and fatigue if

D= (025-)’ + (gj:)’ >1 (2)

¢ Comments:
1. This approach is similar to the Goodman linear model and the elliptic model,

which accounts for the mean stress depicted in Section C-1.

2. The creep-limited static stress corresponds either to the design limit on creep
strain at the design life or to creep rupture at the design life, depending on
which mode governs.

3. The linear rule is usually (but not always) conservative. In the higher tem-
perature portion of the creep range, the elliptic relation usually gives better

agreement with data.

¢ Reliability Considerations:
1. The event of failure is [D > 1}, where D is defined as above.

2. The probability of failure is
P; =Pr[D 2 1]

All of which can be random variables. Reliability analysis can be made using
Wu/FPI or AMVFO.

o References :

[1} Collins, J. A.,Failure of Materials in Mechanical Design, John Wiley & Sons,
1981.
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H-2 High Temperature Low Cycle Fatigue
(Synergistic Effects of Creep and Fatigue)
Frequency Modified Strain; Constant Amplitude Stress

e Total-Strain-Range-versus-Life Relation [1]:
The plastic strain-life relationship is

Aep = Ny~ (1=m)e (1)

The elastic strain-life relationship is

(]
= —E-Ae;" v (2)

= %(e})n’Ncn'u‘y—(l-n)cn'

and the total strain-life relationship is

Ae = Ae. + Qe

%(elf)n'Ncn'V’f—(l—x)cn' + elchV—(l-x)c (3)

where
Ae, : Elastic strain range

Aep : Plastic strain range

Ae, : Total strain range

K': Cyclic stress-strain coefficient

E : Young’s modulus of the material

e; : Fatigue ductility coefficient
n' : Cyclic strain-hardening exponent
N : Applied service life

¢ : fatigue ductility exponent

v : Applied frequency

k,7 : Material’s constants
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The quantities x and v measure the effect of frequency on fatigue life. Coef-
ficients and exponents in equations (1), (2) and (3) can be determined from
the results of several laboratory tests at specific strain ranges and frequen-
cies, by means of regression analysis. The coeflicient K ' and exponent n'
can be determined from cyclic stress-strain experiments at unit frequency
while « is obtained in similar experiments by varying the frequency while
maintaining the plastic strain-range constant.

From equation (2), one may obtain

Ag = K'(elf)n' Nev' y7—(1—w)en’ (4)
and rewrite it as Ao
- = aN?/® (5)

By setting v = 1, equation (5) is a similar to the Basquin equation. The a
and A can be determined using the stress-life method, while § is determined
in the same way as the determination of v as described previously. With the
a, B and § obtained and K', n' and 7 solved previously, one may have €, ¢
and « solved.

From equation (3), one may calculate the total strain range Ae, with a
given applied stress cycle. However, a numerical computation is required to
compute the life N with a given total strain range Ae,.

¢ Reliability Considerations:

The event of failure is

1. [Ae > Ae¢], where Ac is the applied strain range after N cycles.

2. [N < Ny), where Nj is the design life.
The probability of failure is

1. Py =Pr[Ae > Ac]

2. Py = Pr[N < No)
All the parameters, i.e., coefficients, exponents, and material constants asso-
ciated with life prediction may be random variables. Life prediction can be
made using Wu/FPI or AMVFO.

o References :
(1] Coffin, L. F., Jr.,“The Effect of Frequency on the Cyclic Strain and Low

Cycle Fatigue Behavior of Cast Udimet 500 at Elevated Temperature,” Met-
allurgical Transactions, 12(November, 1971):3105-3113.

[2] Collins, J. A., Failure of Materials in Mechanical Design, John Wiley & Sons,

1981.
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H-3 High Temperature Low Cycle Fatigue
(Synergistic Effects of Creep and Fatigue)
Strain Range Partitioning; Constant Amplitude Stress

¢ Nomenclature
B Intercept of elastic-strain-range-versus-life relations
b Exponent on cyclic life for elastic-strain-range-versus-life relations
C Intercept of inelastic-strain-range-versus-life relations
C' Intercept of equivalent inelastic line for combined creep-fatigue cycles
¢ Exponent on cyclic life for inelastic-strain-range-versus-life relations
F Strain fraction
K Cyclic strain-hardening coefficient
N Applied cycles on zero mean process
n Cyclic strain-hardening exponent
A Range of variable
€ strain
o stress

subscripts

¢ Compression
cc Creep strain in tension, creep strain in compression
cp Creep strain in tension, plastic strain in compression
el Elastic
iJ Ppp, cp, pc, cc
in inelastic
pc plastic strain in tension, creep in compression
pp plastic strain in tension, plastic strain in compression

e Assumptions [1]:

1. Cyclic life is a function of the inelastic strain range and the type and relative
amounts of time-independent strain (plasticity) and time-dependent strain
(creep) present in a cyclic stress-strain hysteresis loop.

2. The inelastic and elastic failure lines for isothermal creep-fatigue cycles are
parallel to the corresponding failure lines for pure fatigue (pp cycles).

163



3. The stress process has a zero mean. The final computed life should be

adjusted to account for any mean stress effects.

o The Total-Strain-Range Version of Strain Range Partitioning (TS-SRP) Ap-

proach.
1. The four generic Strain Range Partitioning (SRP) life relations are

Aein = Cij(Nij)* (1)

ij = pp, cp, pc, cc and c is a constant due to the assumption 2.
2. The interaction damage rule (IDR) is written as follows :

F;; 1
2FH =% (2)

where Fj; is the strain fraction of the type of cycle and is defined as follows

2]:
Fyp = (A€in)pp/Dein

Fcp = (Afin)cp/Afin
ch = (Aeiu)pc/Afin

(3)
Fee = (A€in)ec/Otin
with
Acin = (Atin)pp + (A€in)ep + (Atin)pe + (Atin)ee
3. Total-strain-range-versus-life relation
Ae = B(NY +C'(N)° (4)

where Acg; is the total strain-range. Parameters in this equation relate the
failure behavior and flow behavior in the following manner:

Failure behavior
Aeq = B(N)® (5)
Aegin = C'(N)* (6)
where
¢’ = (¥ Ff(Ci) (7
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Flow behavior

From equations (5), (6), and (8), a desired equation relating flow and failure

Aeet = Kij(Aein)"

characteristics is obtained,

B = K;;(C')"

o Life Prediction

There are three variants suggested by Saltsman and Halford [1,3] for life
prediction by using the total-strain-range version of strain range partitioning (TS-

SRP) approach. These variants are summarized as follows.

Yariant 1

(1)

(2)

(3)

(4)

Determine the SRP inelastic-strain-range-versus-life relations
and the pure fatigue (pp) elastic-strain-range-versus-life rela-
tion from failure tests.

Calculate the cyclic strain-hardening coefficient (K;;) and the
strain fractions (F;;) by using an appropriate constitutive flow
model, e.g., Walker model [4], for which the material constants
are known.

The elastic line intercept B can now be calculated by using
equation (9) and the proceeding information.

Determine the total-strain-range-versus-life curve for the case
in question. Enter the curve at the appropriate total strain
range then determine cyclic life for the zero-mean-stress con-
dition. The inversion method of Manson and Muralidharan[5]
which is described in section L-2 can also be used to compute
the cyclic life N with a given total-strain-range.

Yariant 2
(1) Same as step of variant 1.
(2) Determine the elastic line intercept B by using the empirical

equation of Halford and Saltsman [6]. The constants in this
equation are determined from failure data. Failure tests should
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be performed at the lower strain ranges to reduce extrapolation
errors.

(3) Measure strain range (elastic and inelastic) and stresses from
failure tests and extrapolate to lower strain ranges using em-
pirical equations.

(4) Determine cyclic life using step 4 of variant 1.

Yariant 3

(1) Same as step 1 of variant 1

(2) Conduct flow tests for creep-fatigue cycles of interest and ob-
tain from these data necessary empirical correlations describing
the flow behavior.

(3) Calculate the elastic line intercept B by using equation (9).
The strain-hardening coefficient K;; and the strain fractions
F;j are determined from the correlations obtained from step 2.

(4) Determine the cyeclic life using step 4 of variant 1.

e Mean Stress Consideration [7):
1. A method for accounting for mean stress effects on life for isothermal con-
ditions has been proposed [8]. The predicted cyclic life accounting for mean

stress effects is
(Nm)? = (N)® = Veys (10)

where V,y; is the effective mean stress correction term. For isothermal fa-
tigue, V. is determined by the following equation:

Vers = 2= expl~T0(Acin/ Ber)’] (11)

where o, is the mean stress and o, is the stress amplitude. Note that this
method was developed for a specific nickel-base alloy and may not apply to
other alloys or even to other nickel-base alloys.

2. For thermomechanical fatigue (TMF), an alternate definition of Vs is in
order since a mean stress can naturally develop because of the temperature
dependency of the yield strength in tension and compression. Hence, Veyy
in equation (10) should be determined [9] by the following:

_ 14(R/Ry)
Vet = T2 (R, [Ry) (12
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where R, is equal t0 Omin/Tme: and R, is the absolute value of the ra-
tio of the compressive yield strength to the tensile yield strength at their
respective maximum and minimum temperature and strainrates in TMF cy-
cle. However, there is no direct experimental verification of this method for
accounting for mean stress effects for nonisothermal fatigue.

¢ Reliability Considerations:
Because uncertainties exists in the design factor associated with life predic-
tion [10], reliability analysis is a must in life prediction.

The event of failure is
1. [Ae > A¢,), where Ac is the applied strain range after N cycles.
2. [N < Ny}, where N is the design life.
The probability of failure is
1. Py =Pr[Ae > Ae]
2. Py = Pr[N < Nq]
All the parameters associated with life prediction may be random variables.
Life prediction can be made using Wu/FPI or AMVFO.

e References :

(1] Saltsman, J. F. and Halford, G. R., “Procedures for Characterizing an Alloy
and Predicting Cyclic Life With the Total Strain Version of Strainrange
Partitioning,” NASA Technical Memorandum 4102, June 1989.

(2] Manson, S. S.; Halford, G. R.; and Hirschberg, M. H., “Creep-Fatigue Anal-
ysis by Strain-Range Partitioning,” Design for Elevated Temperature
Environment ASME, 1971, pp.12-28. (NASA TM X-67838)

(3] Saltsman, J. F. and Halford, G. R., “An Update of the Total-Strain Version
of Strainrange Partitioning,” Low Cvcle Fatigue, ASTM STP 942 1988, pp.
329-341.
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FRACTURE MECHANICS (Priliminary)

At Rocketdyne most fracture mechanics analyses employ Linear Elastic Fracture Mechanics
(LEFM) principles; and most crack problems are of mode I. The stress intensity factor (K7j)
solutions published in the literature and the handbooks (Ref. 1-4) are used. A plastic zone
correction is typically included in the stress intemsity factor calculations. The most common
crack configuration is the semi-elliptical surface crack; in such a case, Newman and Raju’s (Ref.
5) solution is used to calculate the K values. Furthermore, the crack propagation is two di-
mensional, it grows both in the depth (a) and in the length (c) directions with its shape varying
but remaining elliptical.

Calculation of the crack growth is performed by integrating the fatigue crack growth rate
(FCGR) equation, which take the following form

o = f(a,AKD) &

and the fatigue crack growth (FCG) life of the member (N,) is

ay dﬂ
N, = / — 2
'= ) T@aED @)
where a; and ay are the initial and final crack depths, respectively.

Two FCGR equations are being used at Rocketdyne to represent the fatigue crack growth
rate. These are the Walker equation (Ref. 6) and the modified Forman equation (Refs. 7,8).
With further simplification the Walker equation can be integrated to obtain an explicit algebraic
expression for the fatigue crack growth life NV 7- The modified Forman equation is employed in
the NASA-FLAGRO (Ref. 8) computer code, which is an incremental flaw growth code com-
monly used at Rocketdyne.

In the integration of the FCGR equations, the initial crack depth a; and the final crack
depth a; of the integration are dependent upon the requirements of the analysis. The initial
crack depth a; can be the NDI capability, an observed crack size, or the crack size defined by
proof test screening. The final crack depth a s can be obtained from the conditions of toughness
failure when K; = K¢, where K¢ is the material toughness; leakage when a = ¢, where ¢ is the
thickness of the member; or the threshold condition when AK 1 = AKy, or K; = Ky, where
AK,, is the FCGR threshold and K, (K1scc) is the sustained load crack growth threshold of
the material.

A simple approximation to the short crack effect using El Haddad’s (Ref. 9) intrinsic flaw size
parameter can be simply incorporated and is often employed as needed.

NASA-FLAGRO is used regularly in the FCG calculations at Rocketdyne. However, this
program is big and contains multiple calculations in addition to the FCG calculation. It is not
feasible to adopt such a program in the current PSAM system. A new subprogram should be
written for the purpose of simulating incremental flaw growth that is compatible to the PSAM
system, for the FCG calculations.
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The Walker Equation

The Walker equation (Ref. 6) assumes that the cyclic FCGR (da/dN) equation can be expressed
in a power law form .

da

¥ = ¢l ®

where AK is the stress intensity factor range; R is the R-ratio defined as the ratio of the maxi-
mum and minimum stress intensity factors, Kmin/Kmaz; and C, m and n are material constants.

Note that when the R-ratio has the value zero, Eq.(3) reduces to the common Paris Equation
as follows da
- n

The stress intensity factor K has a general form as given below
K;=loa (4)

Let us assume that the flaw shape does not change as the flaw advances and that the shape
to front and back face correction (1) remains the same as the flaw grows. Based on the above
equations, the FCGR integration can be expressed in an explicit algebraic expression.

First, based on the definition of the R-ratio (R), the expression of AK; becomes

AK; = Kmaz (1 — R), (5)
and Eq.(3) can be written as
da _ Egc_z_(l_‘_@]" — CK™ _(1-Ry™
dN - C (1 _R)l-m - CKma.‘l:(l R) (6)

Second, let C* = C(1 - R)™", and utilize Eq.(4), the FCGR equation becomes
da

Il—v- = C (z\ Cmaz \/E) (7)
Rearranging this equation, one obtains

da - n

m =C (Aam.,) dN (8)

Third, integrating the above equation from an initial flaw size a; to a final flaw size a;:

‘I da Nl - n
/" — =/o C* (AGmas)" dN 9)
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The above integration can be obtained explicitly for two cases, when n # 2 and n = 2:

(1) When n # 2, the number of cycles Ny in terms of the crack sizes is

= =(n=2)/2 _ _~=(n=2)/2 2
Nf = (d, a, ) (n_2) (Adm“)n C* (10)

or in terms of the stress intensity factors,

2
= (K3 - kB 1
Nf ( maxz; mazy ) (n _ 2) (’\ amu)z C* ( 1)

(2) When n = 2, Eq.(9) becomes

a N
/.,.I% =/o T C" (A mas)? dN (12)

Then the solution Ny can be obtained as

n(2)

a4

VSR O Omac)? (13)

The Modified Forman Equation

Forman’s modification of the Paris equation accounts for instability when the maximum stress
intensity approaches the toughness value K¢ and crack arrest when the range of of stress intensity
is below AKy,. It is written in the form

da  C(1-R™AK}[AK; ~ AKW)
dN ~ [(1-R)Kc - AK()
where C, m, n, p, and q are material constants, and AK;y is the FCGR threshold.

(14)

Usage of this relationship will require the implementation of a numerical integration scheme
for life prediction. Additional complexity could be included by anticipating the flaw shape
changes pattern as the crack advances under certain crack geometries and applied loadings.

Spectrum Loading Considerations
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For the case of a spectrum loading, a Miner’s type linear damage rule is assumed during the
FCG calculations. Two ways of handling the spectrum loading are used at Rocketdyne. First,
the stress ranges are collectively rearranged into a number of load steps using a histogram; and
then the different steps of loads are specified as input loads to a code such as NASA-FLAGRO

to calculate the FCG.

Second, an equivalent stress range technique is used in conjunction with the Walker equation
to convert the spectrum into an equivalent single stress range using the material da/dN - AK;
data. In this approach, a nominal stress range is assumed as the reference load, and each of
the other stress ranges of the spectrum is converted to an equivalent number of cycles of the
reference stress range that would have the same FCGR as if not being converted. The sum of all
the equivalent reference stress range cycles provides the number of cycles of the reference stress
range that is equivalent to the loading spectrum.

In applying the equivalent stress range technique, the load spectrum need to be screened
constantly to identify the stress ranges that the AKX values fall below the threshold range.
The number of such load steps are changing as the crack grows, because the K; amplitudes are
changing as the crack size changes. Cycles that the AKX values fall below the threshold range
do not contribute to crack growth. However, assuming the flaw shape (a/c) and geometry factor
(X) are invariant with the crack size, the threshold flaw size ai can be predetermined for each
step in the spectrum. This simply and conveniently identifies the crack growth intervals where
distinct equivalent numbers of cycles of the reference stress range must be determined.

The Random Variable andiaates

In the FCG calculations, the initial crack size a;, the Toughness K¢, the threshold A, or
K¢, are random variables. The initial crack size distribution can present a pre-existing flaw
population suitably modified by NDE or proof test screening. The crack shape or aspect ratio
a/c where c is the half crack length is also a random variable to define the randomness of the two
dimensional surface crack shape. Furthermore, the material constants introduced in the FCGR
equations, such as C, n, and m in the Walker equation, and C, n, m, p, and ¢ in the modified
Forman'’s equation, are potential random variables. It is expected that n in the Walker equation
and n, p, and q in the modified Forman equation would be deterministic variables.
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1 Introduction

This write-up gives a short summary of the fatigue and creep resistance models used at
Rocketdyne. Several approaches with varving degree of sophistication are in use. All
the presented approaches have their drawbacks. It is not the purpose of this write-up to
present the most ‘accurate’ model but to present those commonly used at Rocketdyne.

A fatigue analysis normally proceeds along the following points:

(A) Define component geometry and material properties
(B) Perform global structural analysis

(C) Define stress history

(D) Count cycles

(E) Perform notch analysis

(F) Calculate damage for entire load history

(G) Determine life

The first two items listed above are not directly addressed here.
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2 Stress History

2.1 General

Analyses of rocket engine systems and components can be performed for transient and
steady state conditions. The conditions during transients typically produce only a few
cycles of higher load level responses and, therefore, affect only the low cycle fatigue
damage. The following discussion will be limited to steady state since most analysis are
done for that condition. Furthermore, the steady state condition at maximum power
level is normally considered although SSME, for example, can operate at several power

levels.

The load history at steady state is usually composed of several sinusoidal loads vi-
brating each at their own frequency and random loads as defined by a power spectral
density function (PSD) superimposed onto the steady state load level. The sinusoidal
loads are often due to rotating machinery while the random loads are normally due to
combustion processes. In a typical deterministic analysis each of three orthogonal axes

are analyzed separately.

The dynamic stresses at a point can be defined by the root-sum-square of the random
stress component j, o7, the sinusoidal amplitude of each stress component j for each
exciting frequency n, o}’,, and the expected frequency, fZ, of the combined dynamic
load history (normally based on effective stress and effective stress rate). There are n,,
exciting frequencies and only one source for the random loads. The details of how these
values are commonly calculated at Rocketdyne are given in reference [1].

An alternate and more precise way to define the dynamic stresses is to specify a PSD
of the random stress components at the location of interest together with the amplitudes
of the sinusoidal stress components, ¢, and its frequency, f3°.

The following sections show how the dynamic load history is simplified for a fatigue
damage calculation at Rocketdyne.

2.2 Sinusoidal Plus 3¢ Value Random Loads

The complex dynamic stress history is simply replaced by a sinusoidal stress history with
the previously mentioned expected frequency fZ, and a constant combined amplitude
of

of =307 + Y o). (1)



The summation should be made at the stress component level so that the proper effective
stress of the stress range can be calculated.

For details on combining the dynamic loads refer to [1].

The combined expected frequency, fZ, is based on the number of zero crossings and,
therefore, can ignore some cycles which do not cross zero but nevertheless do damage
to the material. Furthermore, the ‘local’ mean stress and strain of a dynamic cycle is
ignored in the calculation of the fatigue damage only the ‘global’ mean stress and strain
associated with the steady state mean load level can be considered. Figure 1 shows
a stress vs. time history and indicates the ‘global’ and ‘local’ mean stress. A similar
definition applies to the ‘global’ and ‘local’ mean strain. The above mentioned zero
crossing occurs when the stress vs. time trace crosses the ‘global’ mean stress in figure 1.

2.3 Sinusoidal Plus Rayleigh Distributed Random Loads

The peaks of the random load is assumed to follow the Rayleigh distribution with the
probability density function

=1 & e'i'(f)2 ifz >0 .

stress
reversal point

- ‘local’ mean stress
— ‘global’ mean stress

time

Figure 1: Typical stress vs. time history showing the ‘global’
mean stress of the whole stress history and the ‘local’
mean stress of one cycle.
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The o in the above equation is the parameter of the Rayleigh distribution and equals
the previously mentioned root-sum-square of the random stress component j, o]. The
sinusoidal load is superimposed assuming the frequency and the phase angles are all
identical. Note that the sinusoidal part of the combined stress amplitude is regarded to
be a fixed deterministic value while the random part follows a probabilistic distribution.
The combined amplitude for the stress component j is written as

of = Adj + Lamoin A 20 (3)

with A being a parameter specifying the magnitude of the combined stress amplitude.
Let o2 be defined as

of = o5 = Yot

then the resultix;g probability density function of the combined amplitude becomes

oS _}(_:;,)z o c oo "
flef) = wre 7 Hoi > Zakioia (4)
0 if 0f < 1am 05 -

Figure 2 shows the resulting probability density function for the combined alternating
amplitude. From that figure it can be seen that the sinusoidal part of the alternating

al® .

Nee o

29
n=l aj, n

“

Figure 2: Simplified probability density function for the sinu-
soidal plus Rayleigh distributed random loads.
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stress simply causes a shift to the right of the Rayleigh distribution®.

These combined amplitudes are again assumed to oscillate at the previously mentioned
expected frequency, f5.,.

The same remarks about the expected frequency and the ‘local’ mean stress and strain
as mentioned in the previous section apply here.

2.4 Stress vs. Time History

This approach uses the PSD of the random stress components and the set of sinusoidal
stress componeats, o', with its frequencies, f* to create an actual stress vs. time history
at the location of interest. The PSD of the random stress component is discretized so that
the power spectrum in a small frequency window is replaced by an equivalent sine function
with a constant amplitude, ¢7%7%™ and frequency, f7*"%™. Thus, the whole PSD of the
random load is replaced by n,4n40m sine functions with amplitude and frequency as derived
from the PSD. A sample of the actual time history is now generated by combining the
various sine functions given by the PSD with all the initially given sinusoidal amplitudes

50 = 3% [oan (Zrar)] + o

n=1 n
S [a;_“,::“’"'sin ( f2:fm + ¢:,:""°"')] . (5)
m=l m

The phase angles ¢2* and #72"“™ have to be randomized? to arrive at one sample his-
tory. Several time history realizations exist for one given PSD and one set of sinusoidal
amplitudes. Therefore, a Monte Carlo simulation which includes the fatigue and creep
damage calculation has to be performed to account for the variations in those sample
load histories.

This method certainly requires the highest computational effort of all the three pre-
sented approaches but removes the uncertainty associated with the use of the expected
frequency, fZ,,. Proper cycle counting routines can also determine the ‘local’ mean stress

Tp
and strain for subsequent consideration during the fatigue damage calculations.

A typical Space Shuttle Main Engine flight duration is approximately 500 seconds.
It is often not necessary to create a stress vs. time history for the whole 500 seconds to

'This shift results from the assumption that the sinusoidal load is in-phase with the random loads
and oscillates at the same frequency. A correct superposition of the random and sinuscidal loads would
result in a distortion of the original Rayleigh distribution.

A uniform distribution between the limits 0 and 27 is used for randomizing each phase angle

independently.
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calculate the high cycle fatigue damage. A stress vs. time history of just a couple seconds
might be regarded as long enough to represent the appropriate fraction of the whole 500
seconds history. Significant savings in computations can be achieved if this shorter stress

history is used.

3 Cycle Counting

If the stress history is defined as described in section 2.2 or 2.3 then there is no need for
counting cycles. The number of dynamic cycles is defined by the combined expected fre-
quency f<,,, the duration of the stress history and the steady state stress cycle (start/stop

cycle).

Cycle counting is necessary if the stress history is defined as stress vs. time. The
preferred method at Rocketdyne is the ‘Loop Closure Method’ as described to some
detail in reference [2] and in the example given in section 6.2 (page 21).

The tracking of each closed stress-strain loop requires a large computer memory and
considerable computing time. Simplifications to the cycle counting routine can be made
if the effect of the ‘local’ mean strain (see figure 1) to the fatigue damage is ignored
for the high cycle fatigue® cycles. Ignoring the ‘local’ mean strain can provide a rea-
sonable approximation to the high cycle fatigue damage if the ‘global’ mean strain is
relatively large compared to the ‘local’ mean strain. In this case a ‘Half Cycle Count-
ing Method’ can be implemented. This method identifies each half cycle between two
reversal points and calculates the fatigue damage due to that one reversal. The method
is easy to implement since the cycle counting simply proceeds from one reversal point to
the next. If the fatigue damage from one half cycle is calculated that half cycle will not
be required anymore and, therefore, it does not have to be stored.

3The dynamic loads during steady state are commonly referred to as high cycle fatigue loads and the
loads during engine start or stop transients are usually called low cycle fatigue loads at Rocketdyne.
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4 Notch Analysis

4.1 Neuber’s Rule

Cracks preferably initiate at stress concentrations like notches. A coarse grid finite ele-
ment model does not pick up the full effect of the stress concentration and it is in practice
difficult to know how much the finite element model results are affected by the stress con-
centration. It is a common practice at Rocketdyne to conservatively assume that a coarse
grid finite element model does not include the effect of any stress concentration.

Several approximate analysis methods exist to estimate the elastic-plastic stress and
strain at the notch root (surface) if the notch plasticity can be categorized as contained
plasticity. The most often used method is Neuber’s rule.

The elastic nominal stress component j at some time t; when a stress reversal occurs
in the stress history is designated a';""“"(t,) (it takes into account the steady state mean
stress). At time ¢, > t; the next stress reversal occurs and the elastic nominal stress
component 7 has the value a';-""""'(tz). Therefore, the elastic nominal stress excursion is

Ag§™™ = i (b)) — of (). (6)

The elastic stress concentration factor K, ; acts on the stress component j. Therefore,
the elastic stress range of component j at the notch root is

(7

Now, the elastic effective stress range Ac?), can be calculated based on Aot using von
Mises’ yield criteria

el __ ) el.nom
Aa'j = K“JAUJ' .

Ao, = [% {(Aa;', - ag)’ + (A - A0t)’ + (A0t — AcL)’
+6[(a0s) + (a0s)" + (202) )] . )
Neuber’s rule states that
2
——(Aag” ) _ AP A = Act 2 g(AaT?f‘) 9)
where
&7 = g(os7) (10)
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describes the cyclic stabilized stress-strain behavior of the material and the factors of 2
result from the application of Masing’s hypothesis for a stabilized hysteresis loop.*

The elastic-plastic effective stress Aa:}}" can be calculated from equation 9 and the
resulting elastic-plastic strain Ae:'f"l from equation 10. The stress-strain behavior is
often modeled by a bilinear curve or a Ramberg-Osgood equation.

4.2 Fatigue Notch Factor

The total fatigue life is commonly defined to be the sum of the crack initiation life and
the crack propagation life. While the crack initiation life’ is quite well characterized
by the local stress and strain, the crack propagation life is significantly dependent on
stress gradients along the crack path. Since most fatigue tests are performed on smooth
specimens and provide the total fatigue life the difference in crack propagation behavior
of a smooth specimen and a notched specimen has to be taken into account by a factor.
This factor is called the fatigue notch factor, K.

It is important to realize that if only crack initiation life is of interest and the test
data is collected for crack initiation then the fatigue notch factor, Ky is practically equal
to the stress concentration factor, K, for linear elastic stresses (elastic-plastic stresses
can be handled with Neuber’s rule). However, if the total fatigue life is of interest then
the fatigue notch factor, K is always equal or less than the stress concentration factor,
K, (again for linear elastic stresses). .

The fatigue notch factor, Ky can be estimated based on fracture mechanics consider-
ations since it mainly depends on the difference in crack propagation. This is described
in reference (3] for the linear elastic case.

The fatigue notch factor, K, is a function of notch geometry, material properties,
applied stress ratio R, and number of cycles to failure N;. However, if the fatigue notch

4Equation 9 is sometimes written as

el 2
2 (1 + ") (Add!) =A el=pl el=pi
3 E = S0epy Doy

which reflects the relation between effective stress and effective strain. This form is not used in this
write-up.

5The stages of crack initiation and crack propagation are difficult to distinguish on theoretical grounds.
Io practice, however, the crack initiation phase can be defined as the forming of a crack with a fixed size
which can be tied, for example, to microstructural features of the material. Because of the controversial
pature of this subject several definitions besides the one mentioned can be found in the literature.
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factor is desired at the endurance limit®, K}“d then simple expressions are available.
These expressions can be based either on a fatigue crack propagation threshold (see for
example [3]) or on an empirical equation developed by Peterson [4, pages 9 to 11]. Here,

only the latter is going to be shown:

K, -1

T+2 (1)

K}"‘ =14+

where K§*¢ = fatigue notch factor at the endurance limit,
K, = theoretical, linear elastic stress concentration factor,
a = material constant depending on strength and ductility,
r = notch root radius.

Some average values of a for aluminum and steel are given in reference [3].

If fatigue test data are available for the notch size and operating condition of interest
it is strongly recommended to use those data directly.

If a fatigue notch factor is to be taken into account in the fatigue analysis then the
K.,; in equation 7 has to be replaced by a K§7¢ (the fatigue notch factor acting on stress
component j)

Acflx, = KffAas™™ (12)
and the effective stress range is calculated as in equation § but with the above stress
ranges.

1 2
el el el
AUdLK’ = [E{(Adzz'xl —Aayy'K!) +

2 2
A o2l el el el
(AJW,K, - Aaxz. K]) + (Aazz. Ky~ AU::_ Kl) +

6[(acth )+ (Aot ) + (2o) ]} 09

Note that the elastic effective stress range should be below the vield strength of the
material since the fatigue notch factor at the endurance limit is used!

As will be discussed later, the fatigue damage is not only dependent on the applied
stress range but also on the mean stress and mean strain. In practice, it is easier to
define the fatigue notch factor in such a way that the actual local mean stress (and/or
strain) at the notch root is used. In other words, the fatigue notch factor is applied to the
alternating stress (or strain range) while the appropriate stress (or strain) concentration

61t is Rocketdyne’s practice to define the endurance limit as the stress amplitude at 107 cycles in a
S-N curve even if the curve does not exhibit a plateau there.
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factor is applied to the mean stress (or strain). This definition is used in the remaining
discussion.

It is again emphasized that K ; depends on the number of constant amplitude cy-
cles to failure N; among other things. This cycle dependency is in general not known.

Therefore, if a variable amplitude load history — for which each amplitude level occur-
ring in the history results in a different number of cycles to failure — is considered the

application of Kj,; becomes difficult.

188



5 | Damage Accumulation

5.1 ‘Conventional’ Method

For those components experiencing high cycle and low cycle fatigue damage as well as
creep damage, the following generalized life equation is commonly used at Rocketdyne:

@gog = Qf}{ + 4@}[, + 4®c (14)

where &, = total damage,

&,y = high cycle fatigue damage,
&,z = low cycle fatigue damage,
®. = creep damage.

The total damage ®,,, is assumed to equal 1 at failure although experimentally ob-
tained values can vary from .25 to 3. The factors of 4 in the above equation are safety
factors; a safety factor on the equivalent alternating stress, o.qai is applied in the case
of high cycle fatigue (see equation 16).

In general, the effective stresses (mean and alternating) are used in the damage calcu-
lation for high cycle fatigue. However, when the alternating stresses in two perpendicular
directions have the same sign and are in phase, the maximum principal stresses (mean
and alternating) may be used. The effective stresses are used in the following discussion.

5.1.1 High Cycle Fatigue

The high cycle fatigue damage is evaluated by a linear damage rule (Miner’s rule)
ngcr pli)

—= (15)
iml lV} )

Oy =

where  n{? = the actual number of cycles at a particular equivalent alternating stress

amplitude, ag)w,
N}') = the cycles to failure at that stress amplitude a'ﬁ;)m,

nycr = the number of different stress amplitudes a’ﬁ?m in the stress history.

The cycles to failure at the equivalent alternating stress amplitude can be read from
stress vs. life (S-N) material curves.
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The equivalent alternating stress takes into account the effect of the mean stress. If
test data is available then it should be used otherwise a modified Goodman rule is used.

The rule is represented by the formula
(%)

B _ Tl :
Oeqait = (Fs)eth 1—'___ (:4; © (16)
where ag)‘,, = equivalent alternating stress amplitude at a stress ratio R = -1,
(FS)eqaie = factor of safety on the equivalent alternating stress amplitude:
(F S')b _ ] 1.25 for stationary components,
e7alt = 1 1.40 for rotational components,
aﬁi = alternating stress amplitude (includes the effect of K7 ;),
ol) . = actual mean stress (includes the effect of K ;),
Fi, = ultimate strength,
Fyy = yield strength,
(0 ean)®) = adjusted mean stress:
() Ut(:;)ecn ) lf USZ + Ur(l::)ean S BV’
(Omean)” = § Fiy - U'S: if "S{Z + 0Qhan > Fu (17)
0 if o) > F,.

The above equation is based on the assumption of an elastic-perfectly plastic material
behavior.

5.1.2 Low Cycle Fatigue

The low cycle fatigue damage is also evaluated by a linear damage rule

nLcF n(i)

b= ) ¥ (18)
=t Ny |
where  n{) = the actual number of cycles at a particular equivaient strain range, Ae(l,

N}i) = the cycles to failure at that equivalent strain range, Ae{l,
nrcr = the number of different strain ranges Aeg‘g in the stress history.

The cycles to failure at the equivalent strain range can be read from strain vs. life
material curves.
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The equivalent strain range takes into account the effect of the mean stress and strain.
In practice this effect is often ignored but approximations can be made as follows (if test
data is available on this effect then it should be used). Manson’s Method of Universal
Slopes equation [6] modified for mean stress and mean strain by R. Cooper and discussed

with S. S. Manson is

Aetot = Aeel + Aepl
3.5 F = Omean - . - ‘
= ( tuE )lvf 12 + (D . lemeanl) Slvf 6 (19)

where Ae€x = total strain range,

Qe = elastic part of the total strain range,
Ae, = plastic part of the total strain range,
D = material ductility (D = In (Too—l-ggT) and R.A. is the reduction of area

in percent),
€mean = INean strain.
If the effect of the mean stress is ignored on the low cycle fatigue life and only the
mean strain is considered then
Ac

Acy = Aot = == = (D = |emean|)* N} (20)

and a simple expression for the equivalent strain range can be obtained
Aeﬁ',)

(1 - l%“d) s - (21)

Aeﬁ? = Aeg) +

Note that the form of the above equation is very similar to the Goodman rule used in
high cycle fatigue.

5.1.3 Creep Rupture

The creep rupture damage is again evaluated by a linear damage rule

Rereep t(t) 09
Qc = Zl t(—,) (--)

where t() = the actual time at a particular hold-time stress level, 0',(;2,4
t) = the time to rupture at that hold-time stress, o\ iy ‘
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feeey = the number of different hold-time stresses in the stress history.

The time to rupture at the hold-time stress, t), are obtained from stress-rupture life
curves, which are experimentally determined for the materials and temperatures of inter-
est. Empirical equations (8] for the stress-rupture life curves are usually written in the
following form

logt, = ¢ + P(o,T) (23)

where P(o,T) has been proposed in a number of different forms:

(1) P(o,T) = b/T + 52 X/T + b X*/T + b X3/T
(2) P(a,T) = b/T + 5 X + 5 X* + b X°
(3) P(a,T) = (T=T)(bh + b2 X + b3 X* + b X?)

These are the Larson-Miller [9], Sherby-Dorn [10], and Manson-Haferd [11] relationships,

respectively. In the above expressions,
t. = the time in hours to rupture at a stress level ¢

¢ = the regression constant
b; = the coefficients (b, through d)
T = the absolute temperature (T is the temperature of convergence of the

iso-stress lines)
X = the log stress, bg(o).

While all the forms may be used to model a data set with varying degrees of goodness
of fit, experience and practice indicate the Larson-Miller relationship adequately models
most materials and is usually the preferred equation form. If none of these standard forms
satisfactorily follow the data trends, various other combinations of stress and temperature

may be tried.

5.2 Total Fatigue Curve

The interaction of fatigue and creep damage is accounted for in a similar way as before

Qlot = Qfatigue + Qc (24)

where $,,, = total damage,
D fatigue = fatigue damage,
. = creep rupture damage.
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" The creep damage is calculated as described in section 5.1.3 and the total damage
®,,¢ is assumed to equal 1 at failure as mentioned in section 3.1.

The fatigue damage is determined from a total fatigue curve as proposed by Morrow

AV Aey + ACPl

2 2 2
—- Q b - Tmean 9 ¢ - Ifmetml o
= Zeny (1-%=) s g 1ol
and the consistent Ramberg-Osgood type of stress-strain curve
c/b '
Abe _ Ay Ay Ao Ac
2 ~ 2 T2 “wEtuly, (26)

where Ao = stress range,
Ae;e = total strain range,
Ae,; = elastic part of the total strain range,
Aey = plastic part of the total strain range,
Ny = number of cycles to failure (2N, is the number of reversals to failure),
E = Young’s modulus,
oy, €7, b, ¢ = curve fitting parameters.

Knowmg the.effective stress range, Ac{?), the elastic and plastic strain ranges, Ae

and Aep, , can be calculated from equation 26. Then, the fatigue damage for all fatxgue
cycles, ny,e, can be derived from equation 25

n n &c
fat 1 Jeat 0'; (1 - 0’( /Ru) )
D fasigue = ) — = 2 meun : 27
feti :[: N{) g [Eef 1 - |eian]/D "’ @7
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6 Examples Using Deterministic Analysis Proce-
dures

6.1 Example I: ‘Conventional’ Method

The following example details the analysis procedure for a case when the stress history
is given as a superposition of sinusoidal loads plus a Rayleigh distributed random load
and the damage is calculated based on the ‘conventional’ method. The sinusoidal plus
random loads are associated with high cycle fatigue damage and are assumed to result in
elastic strains only while the start/stop loads are associated with low cycle fatigue and
creep damage and can cause a locally elastic-plastic response.

For the remainder of the text the following abbreviation is used to specify the calcu-
lation of the effective stress from the component stresses:

oerr = ¥(o;)

- J-;- {(a'zz - aw)2 +{ow — 0'22)2 + (022 - a”)z +6 [a-z’v'!l + 63‘ + agz]} :

(A) Component Geometry and Material Properties:
The following parameters are given:

Geometry: K. ; = elastic stress concentration factor acting on stress com-
ponent j,
K ; = fatigue notch factor (assumed to be constant here) for
stress component j,
yield and ultimate strength, respectively,

Properties: Fy, Fu =
D = ductility,
E = Young’s modulus (E = do/deif |o| < Fyy),
E, = tangent modulus (Ey = do/deif [o| > Fy),
Tucr (Ga) = stress vs. life curve for high cycle fatigue,
Trcr (Ae) = strain vs. life curve for low cycle fatigue,
Ocreep (o) = stress vs. time curve for creep rupture.

(B) Global Structural Analysis:
The global structural analysis provides the following values:

oP*" = steady state mean stress during operation for stress component 7y

a'J’-"‘ = stress at rest (e.g. stress due to assembly loads) for stress component 7
fép = combined expected frequency,
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o}’, = sinusoidal amplitude of the stress component j for the n** exciting fre-
quency, 1 < n < n,,,
n,, = number of exciting frequencies (sinusoidal amplitudes),

o} = root-sum-square of the random stress component j (a Rayleigh distri-

bution is assumed),

tiotat = total operating time per flight.

The global response is assumed to be elastic so that Neuber’s rule can be applied at a
notch root.
(C) Stress History: ‘
The continuous probability density function of the sinusoidal plus random loads in the
interval”’ 0 < A < oo, as shown by the dotted line in figure 3, is replaced by several
discrete amplitude levels (a;"""'):“ and the corresponding numbers of cycles n(*) where
1 €1 < nger. The bars in figure 3 show the discrete probability density function
approximating the continuous probability density function. The cumulative number of
cycles within the interval A; < A < A\ is

n = [e'i"\-? - e-il\‘?‘”] f:,p Leotal -

Tsee equation 3 on page 4 for the meaning of A.

o)

] l l[[l (ae.fmvm)"

Moo .38 J
n=1 oj, n alt

Figure 3: Comparison of the continuous and the discrete proba-
bility density function for the sinusoidal plus Rayleigh
distributed random loads.
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And the equivalest discrete amplitude is

elynom\®  _ r 35
(0’,- )m = Amiddle0; + 2:10'-_,,
n=

where

Amiste = || =21n [3 (P + &H0)

Amigdte is placed in the interval A; < A < A4 so that half of the number of cycles n() lie
in the interval ); < A < Amiddte and half of them in Amiaate < A < Ai41. Other choices for
defining Amiddie are also frequently used.

The interval limits ); and Ai41 can be chosen arbitrarily as long as the divisions are
small enough to represent the continuous probability density function. The following
limits are given as a suggestion:

I<A<15 — mlstep AX=.15
15<€ 1 <305 — in29steps AA =.10
3.05<1<35 — inlstep AA=.43
35€A<50 — in3steps A =.50
50< A <o — inlstep Al =00
(D) Cycle Counting: -
HCF cycles: nl¥
alt. stress: (a“ )(i)
: : ¢/£, K1) ale
mean stress: \Tgsys)
LCF cycles: 1 per flight
strain range: Aely
s el=pl
mean strain: (e,H )mm
Creep time: t;.0 per flight
peak stress: (Ad:ff-fpl)f-,.,.
(E) Notch Analysis:
The strain range for low cycle fatigue is
Ad;l.nom = o_;per _ a;est + (a;l,nom)i';ﬁcr)
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Ao, = ¥ (K, ;Adf™m)

eff .
Ao, if ./_\cr,” <

2
AefP = (A"el.f )

eff — el—pl
EA eff

and the mean strain for low cycle fatigue is
{, _ el, (nucF)
ot = o+ )

! = (I{"J el,mm)

N { (1= %) B 14 1+ 2o (3)’| waog, >

2
={(1‘§1-:5)F‘v[2 \/‘*'(_Ef_,.;/:‘f_%)f( )] if off; > Fy

o)
( eff )!"-,t a-:lff lf aeff S Ry
el 2
_ 1 -
(ezlffpl)mean = E((T;;l{‘))!__: - Eae:lffpl :
irs

The alternating and mean stresses for high cycle fatigue are

() = 9 (51 o))

( zlff)menn = (0:5’-/7‘)!#“ - \I’ (I{t k) ( el ﬂOM):‘:’CF)) .

The mean stress is constant for any 1.

(F) Damage Accumulation:

(9

( )(;) 0 lf( e/!}\!) > ng
Tmea
" (a’j‘f f) otherwise
(o8h1.,) o
0'('.) — e/j Ky alt
eqalt = (a! )(.)
1- Fiu
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el=pl el=pl
Ae - l Aael_p‘ + EAC,]I ot Adcff
g = eff ol 6
E ( E7IN
- D

nHCF n(d 1 teotal
D rlighe = Z I: G) ] + + .
: 3 Trer(Ae t=pl
t=1 rHCF (deqclt) LCF( “) ea’eeﬁ ((a:ff )fir:t)
For the creep damage it is conservatively assumed that the peak stress (d::'}p‘)r "

acts during the full operating time tica;. The factors of safety were omitted in all of the
above equations.

(G) Fatigue Life:
1

D rlight

Nitights =

The assumption is made that the load history of each flight generates the same stress-
strain response. This is not always the case. For example, the very first stress cycle
starting from o = ¢ = 0 has a different stress-strain path than subsequent but otherwise
identical stress cycles since the subsequent cycles do not in general start at ¢ = ¢ = 0.
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6.2 Example II: Total Fatigue Curve

This example uses a more refined method. The stress history is given directly as elastic
stress vs. time and the damage is calculated based on the total fatigue curve. A Ramberg-

Osgood stress-strain relation is used.

The function ¥ (o;) again defines the effective stress based on the component stresses

as given on page 16.

(A) Component Geometry and Material Properties:
The following parameters are given:

Geometry: K, ; = elastic stress concentration factor acting on stress com-
ponent j,
Ky ; = K, ; — crack initiation is only considered.
Properties: Fi, = ultimate strength,
D = ductility,
E = Young’s modulus,
oy, €, b, ¢ = curve fitting parameters — the fatigue curve and the
cyclic stabilized stress-strain curve have to be fitted
simultaneously and the fatigue curve should consider
crack initiation only to be consistent with A ; = Ay, ;,
Ocreep (7) = stress vs. time curve for creep rupture.

(B) Global Structural Analysis:
The global structural analysis provides the following values:

a;-‘(r,-) = elastic stress component j at the stress reversal points r; where 1 <i <
Neot- a';-‘(r;) accounts for all loads (e.g. also mean operating loads) and
encompasses the whole stress history including any start/stop cycles,
twotat = total operating time per flight.

The global response is again assumed to be elastic so that Neuber’s rule can be applied
at a notch root.

(C) Stress History:
Reorder the reversal points in the stress history so that the very first reversal point r,
corresponds to the largest effective stress level considering the stress concentration factor

U (Kejof'(m)) = max [¥ (K 02(r))] -

(D) Cycle Counting:
The cycle counting routine is the controlling routine of a damage accumulation calcu-
lation. It identifies each strain cycle Aejﬁff" together with its mean stress on..n and
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its mean Strain €mean. Several cycle counting methods are in use in practice but the
preferred one at Rocketdyne is the ‘Loop Closure Method’. A verbal description of
this method is given in reference [2] and a short algorithm is given below. The stress

(a:;-fp‘) Jirst and the strain (e:‘!‘fl) Jirst as well as the two functions NEUBER’ (Aa:‘{!)

and NEUBER, (Aa':‘, ,) are described in the next section ‘(E) Notch Analysis’ while the
damage calculation is given in section ‘(F) Damage Accumulation’. The variables r;, ,,
ry, e, and 4 are pointers to several arrays storing information at the reversal points of
the stress history.

¢ Initialize:
all r; = ‘available’; 0 <t < nee
re=0; my=0; r.=0; rg=1; sign=+1
Ostart (T1) = o'cf-} first

ol
€xtart (T1) = (eclfp‘) Jirst

VVHILE rd < Mot DO
IF r, = 0 THEN
Fg =Ty, Thé=Tg To+—Tq Tge—Tq+1; sign - —sign
ELSE
e Calculate stress ranges:
Aoty = ¥ (K.',-Ta;‘ () = o (ra)])
Do, = U (Ko (re) = of (m)])
Aot e = U (Kuj[of (ra) = o (ro)])
IF r, # 1 THEN
o Calculate starting point of AcHl,,:

Gutart () = Tuart (ra) + sign x NEUBER, (Ac,)

€utart (rs) = €are (a) + sign x NEUBER. (Ao,
END
IF Ac¥  ene > Ac,, THEN
o Accumulate damage with:
Acth? = NEUBER, (AcZ,,)
Aeli=# = NEUBER, (Ad?,,)
Omean = Cstart (rb) - 51gn x Aa:}}pl/z
€mean = Estart (rb) — sign X Ae:lj—}‘p‘/g
o Mark reversal points r, and r. as ‘unavailable’.
e Look for the next three largest reversal points r,, 3, and r. so that
0<r.<ry; 08 rp<r; 0Sra <7y
END
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END
END
o Calculate stress range:

Act, = ¥ (Kyj[of (r) = a5 (r)])
. Accumlu]?te damage with:

Acl? = NEUBER, (Acd,,)

el—pl e

Ay = NEUBER, (Ac,,)

Tmean = Ostart (rb) - Slgn X Aae;};"/“)
= €ytare (1) — sign X Ae'l"‘/-

eﬂl ean

STOP

(E) Notch Analysis:
The very first elastic stress excursion from zero load to the peak load during operation

(9511) i = ¥ (Kus o' (0)).

Solve for ( :},’l)ﬁm from
el \? el=pl el—pl /b
o [

and the elastic-plastic strain becomes

2
( el-pl) _ (d:}f) first
Cetf firse R (U :,lf;’l) first

The function NEUBER, (Aae t ,) used in the cycle counting routine returns the solution
Aa:} ,’l of the following equation '

1 )2 el—pl {~pi 7 c/b
(Aazf!) = 2Ag P —\a’e}f’ e Aag”
E - - /s )E f 20’!

and NEUBER, (Aaj}f) provides the elastic-plastic strain range

(_\ad,)z

Ae:l-”l = ;
i E Ao l-pl
Tetf
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(F) Damage Accumulation:
The damage increment due to one full cycle (two reversals) is

gy (1 - a'mean/Eu) AC,(] d:

AQ]cﬁguc = 2[

Eéf 1- lfmunI/D Ae,;
where
el=pl
Aey = Ao,y
E

Ae,( = Ae:{,}” - Ae,;.
The damage increment is added to the previous damage

Q[ch'guc - chtigul + AQ!ctigu-

(G) Fatigue Life:
The total damage per flight is

tiota
th’ght = @jui;ue + w:l.‘.pl
ec?ﬁ‘? ((atff )fint)
and, therefore, the allowable number of flights
1
N ights = .
Jlight ® prighe

As in Example I it is again assumed that the load history of each flight generates the
same stress-strain respounse.
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7 Random Variables for the Damage Calculation.

7.1 General

An attempt is made in this section to identify the parameters which can be considered
random variables in a probabilistic fatigue and creep damage analysis. The choice of
random variables and their interdependency is, of course, influenced by the desired so-
phistication of the model, the structural problem to be analyzed, and the available data
to characterize the statistical distribution of the input variables. For example, simplifi-
cations or approximations are necessary if not sufficient material test data are available
to fully describe the fatigue curve (S-N curve). The set of random variables given in the
following sections should be considered as one possibility.

Material behavior is in general characterized by a few material properties which are
often considered to be random variables. The mean value and other distribution pa-
rameters of these material properties depend on temperature among other things. It is
not feasible to fully characterize the whole distribution of the material behavior at each
operating temperature. Therefore, an interpolation scheme has to be devised to account
for the temperature (and other) dependency so that not too many material test results

are required.

The following sections only discuss random variables used for the damage calculation.
The whole life prediction analysis depends on more random variables than just the ones
occurring in the damage calculation. The global structural response as well as the local
notch response depends for example on the geometry, material properties, and applied
load history.

Due to the limited scope of this write-up it is impossible to discuss all issues relating
to a probabilistic fatigue analysis. It is rather attempted to summarize some of the more
important issues. A more detailed discussion is given, for example, in reference [7].

7.2 ‘Conventional’ Method

This section suggests random variables for the ‘conventional’ method as discussed in
section 5.1 (page 11).

o Total Damage &,,,:
In a deterministic damage analysis the total damage ®,,, in equation 14 (page 11)
is commonly assumed to equal 1 at failure. However, experimentally obtained
values for ¢ can vary and. therefore, the total damage ®,,, should be treated as a
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random variable. The variation is primarily due to load interaction effects but some
variability is also due to variations in the basic material behavior. The material
variations should be eliminated as good as possible or somehow accounted for to

determine the statistics of ®ro.

High Cycle Fatigue Curve Iycr (Tan):
The high cycle fatigue curve is commonly defined by the equation

Ny = C(ow)” (28)

where C and m are material properties. If enough material test data is available
than both parameters C and m can be defined as correlated random variables.
However, most commonly m is considered to remain constant and only C is treated
as an independent random variable. The lognormal and the two parameter Weibull
distributions are most often used to describe C.

If the fatigue damage is to be calculated for a variable stress history then the failure
trajectory has to be defined. The failure trajectory defines the failure curve of one
fatigue specimen while the median S-N curve defines the failure curve of several
specimens. This subject is discussed in reference (7, pages 4-3 to 4-5]. The failure
trajectories are typically assumed to be parallel to the median S-N curve.

More sophisticated models are occasionally used in practice. One such model ac-
counts for the frequently encountered fact that the scatter in cycles to failure Ny
increases with decreasing stress amplitude. This method is also discussed in refer-

ence {7, pages 5-1 to 5-8]. -

Low Cycle Fatigue Curve I';cr(Ae):
The low cycle fatigue curve is commonly defined by an equation similar to equa-

tion 28

Ny = C(Ae™ (29)

where C and m are material properties (of course, C and m used here are different
than the C and m used in equation 2§).

Similar remarks as given above apply to this set of data.

Creep Rupture Curve t, (0):

Tn Eq. (23) the operating temperature T and stress o may be considered as random
variables. The regression constant ¢ and Temperature T, are determined by test
results, which may be considered as randomly distributed also. For the value of
cin Eq. (23) a value of ¢ = =20 was initially proposed [9], but optimized values
between -10 and -40 have subsequently been found to be suitable depending on the
material {12].
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e Mean Stress Effect:

In a deterministic analysis the modified Goodman rule as in equation 16 (page 12)
is used to account for the mean stress effect if no test data is available. This bilinear
rule is not always confirmed by experimentally obtained results. Besides of treating
the ultimate tensile strength Fi, as a random variable another random variable n

can be introduced ”
= _._“.“_._n ) (30)

See equation 21 (page 13). The exponent .6 can be treated as a random variable
similar to the procedure used above.

7.3 Total Fatigue Curve

This section suggests random variables for the total fatigue curve method as discussed
in section 5.2 (page 14).

¢ Total Damage &,,:
See 7.2 for a discussion on this issue.

e Material Properties oy, €, b, c:
Some items:

- Often b and c considered to be constant and only o; and ¢; are treated as
random variables.

— If sufficient data is not available to fully characterize the distribution of o
then the distribution can be assumed to be similar to the distribution of the
true ultimate tensile strength.

- Similar statement about ¢, and the true strain to failure (ductility).

— Manson’s Method of Universal Slopes equation 19 (page 13) is very similar
to Morrow’s equation 25 (page 13). If some parameters are not known in
Morrow’s equation then they could be ‘borrowed’ from Manson’s Method of

Universal Slopes equation.

— Note that the parameters in equations 25 and 26 (15) are the same. Therefore,
in a statistical analysis both equations have to be simultaneously fitted to the

test data.
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o Mean Stress Effect:

The mean stress effect in equation 25 (page 15) is accounted for through the factor

(1-%’%’1).

A similar modification as mentioned in section 7.2 can be made here. Therefore,
above equation becomes
(1 - dﬂl“ﬂ)n
Fe

and n is treated as a random variable. Qf course, Fy, is treated as a random variable
anyway.

e Mean Strain Effect:
As above. The factor

()

(-5

where n and D are treated as random variables. The n mentioned here is not
related to the n mentioned in the previous item!

becomes
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8 Remarks to Analysis Procedures

Several limitations and restrictions to the presented analysis procedures have already
been mentioned in the proceeding text. The following few points are being highlighted

because of their importance.

1. Thermomechanical Fatigue: Strictly speaking the damage calculation presented
here is applicable to isothermal loading only. However, it is a common practice at
Rocketdyne to use the presented method together with the worst material proper-
ties within the applied temperature range.

2. Neuber’s Rule: It is applicable only to situations where the notch is loaded in load
control and the net section remains elastic. For displacement controlled problems
Neuber’s rule gives conservative answers (the predicted elastic-plastic strains are

too large).

3. Thermal Gradient: Strictly speaking the elastic-plastic surface strain can not be
calculated from the fictitious elastic surface stress with Neuber’s rule if the stress
is due to a thermal gradient. However, conservative answers can be expected if

Neuber’s rule is applied anyway.

4. Multiaxial Fatigue: The stress vs. life or strain vs. life material curves are gen-

erally obtained from uniaxial tests. The presented methods consider a multiaxial

- state of stress by using the von Mises effective stress. During multiaxial fatigue sev-

eral slip systems can be activated and cracks can therefore form in several planes

which can not be accounted for by simply using the effective stress. A more re-

fined procedure for calculating the fatigue damage may be necessary if the effect of

the multiaxial state of stress becomes significant. Note that at notches one stress
component may dominate and a uniaxial state of stress may practically exist.

5. Crack Propagation: In the opinion of the author fatigue should be strictly ap-
plied to crack initiation and fracture mechanics to crack propagation. However,
fatigue life test data commonly includes some crack propagation life. Therefore, all
influences affecting the crack propagation (e.g. stress gradients, hold times in hy-
drogen etc.) should be closely simulated in the fatigue tests or otherwise accounted
for.
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STOCHASTIC CONSTITUTIVE EQUATIONS
Polycrystalline Austenitic Stainless Steels

0)  Pumpose

The purpose of this document is to suggest constitutive models which should be suitabie
for describing the behavior of austenitic stainless steels. Some of the models are fairly crude, and
consequently, their deficiencies and limitations are pointed out where appropriate. Also, in order
to suggest random constitutive models, an attempt had been made to identify which parameters
of the models could be treated as being random. Finally, rhis document should be considered a
working document, since with experience, better ways to approach the modeling may be found.

1) Elastic Properties
Other than possible anisotropy due to the presence of texture, microstructure has no signif-
icant effect on the elastic properties.

2)  Coefficients of Thermal Expansion

Other than possible anisotropy due to the presence of texture, microstructure has no signif-
icant effect on the coefficients of thermal expansion.

3) Uniaxial Tensile Stress-Strain Behavior
From Ref [1], page 251,

o) =154£(T){4.4+23(C)+13(Si)+0.24(Cr)+0.94(Mo) +1.2(V) +0.29(W)

+2.6(Nb) + 1.7 (Ti) +0.82( Al) +32(N) +0.16 (5 ferrite) +0.46 4~} ()
where
o) = engineering yield stress in MPa with no previous cold work,
= grain diameter in mm,
<) = wt.-% carbon, and
(Si) = wt.-% silicon, etc.
The quantities (C), (Si), -+, (N), (3 ferrite) and d may be taken as primitive random variables.

The function f(T) is included to account for the dependence of o",’ on temperature 7 . It will be
described in more detail below (see Eqn 12).
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In order to develop a simple model for the stress-strain curve, it is assumed that the mate-
rial obeys the power law

) e’ o__T
S=S,|=5| » e<e 2
¢,
where
S = true stress,
S5 = true stress at initial yield with no previous cold work,
e’ = total true strain,
e, = true strain when S =S, and
m = strain hardening exponent.

The strain hardening exponent m depends on temperature. This will be discussed below (see
Eqn 13). The quantities S; and e; are given by

o]
&=% §=0’(1+€)) , e;=In(l+€)) , A3)
where
o) = given by Eqn (1),
E = Young'’s modulus (which depends on temperature), and
£ = engineering strain when § =5

It should be noted that Eqn (2) does not provide a good representation of the stress-strain curve
in cases where significant amounts of martensite form during straining. Strain-induced marten-
site formation can be substantial in stainless steels with low Ni content.

Eqn (2) is for solution treated material, and does not account for any cold work which may
have been performed on the material prior to tension testing. To account for the cold work, let
€™ be the effective plastic true strain induced by previous cold working. If the working was
accomplished by unidirectional rolling, then ¢ ™ is given by
e”=-ixn(1-RA) , O0<RA<1 , (4)

3
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where RA is the reduction in area, which could be considered to be a primitive random variable.
The stress-strain curve for the pre-cold worked material is then

+e™ )

S= s;’(%) : (5)
e)

where

e = total true strain as measured from the beginning of the tension test.

The engineering yield stress ¢, depends on the amount of previous cold work. The value of g,
for the worked material may be computed implicitly from

PO »n
o[ ¢ +InA o,

0,3.:5,(‘—;,] , X=1+E’ . (6)
Given g, , one can compute

o}
e,=E , S,=0,(1+¢)) , e,=In(l+¢,) , ™
where
c, = value of ¢ at the initial yield point of the tension test,
c = engineering stress as measured from the beginning of the tension test,
€, =valueofcato=0,, i
€ = engineering strain as measured from the beginning of the tension test,
S, =value of § at6=0,, and
e, =valueofe ato=o0,.

Now, at maximum load,
e,=m-e" , S,=S°(-”%) , (8)

where
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e, = value of e at maximum load, and

S. = value of S at maximum load.

The engineering uitimate tensile strength 0, is

€, =exp(e,)-1 , 0.=1—i'?. ' &)
where

€. = value of € at maximum load, and

G, = value of 0 at maximum load.

Note thate,,0,, ¢,,S,,E., O, and ¢, all depend on the amount of previous cold work, while S,
does not.

Now, the hardening curve should be specified to NESSUS in terms of § vs. e” for finite
deformation analyses. Thus, given ¢ and S from Eqn (5),

P _ S
e =¢ m(1+—_5exp(e)) . (10)

For small strain analyses, the hardening curve should be specified in terms of G vs. e?, where

Pzexp(ef) -1 , o© an

“ep(e)

As mentioned above, the yield stress depends on temperature. Fig 1a directly below shows
the dependence of yield stress on temperature for type 304 stainless; Fig 1b, for type 316 (these
figures are from Ref [2], page 88).
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While these curves are for steels in a cold worked condition, Figs 1 nevertheless suggest that, for
room temperature < T’ <~650°C, the yield stress decreases with increasing temperature in a
parabolic fashion. Thus, f(T) in Eqn (1) should look like

f(T)=ky+k,T+k,T* , 12)

where f(T) = | at room temperature, and k,, £, and k, are experimentally determined. When
determining k,, k, and k, from tension tests at various temperatures, one should ensure that ail of

the tests are performed at the same (reference) strain rate. This is because the value of o is sen-
sitive to strain rate at higher temperatures.

Young's modulus £ also depends on temperature. As a first step in constructing £ as a

function of temperature, Table 1 directly below may be of use, where £ is in GPa (data taken
from Ref (3], page 13; and Ref (4], page 594).
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Table 1

As temperature increases, m also generally decreases. At room temperature, m = 0.50 for
AISI 300 series standard austenitic stainless steels 301, 302, 304, 310, 316, 321 and 347 (see
Table 11 in Ref [1]). From page 100 of Ref [2], m = 0.29 at T = 650°C for type 304 stainless.
Thus, a first approximation is

m =0.5084 -0.000336T , (13)

where T is the temperature in °C. Note that m =0.50 at T = 25°C in Eqn (13). (Data for the
strain hardening exponent m at T = 593°C for types 304, 316, 321 and 3438 stainless can be found
on page 390 of Ref [5]). Also, T in Eqns (1), (12) and (13) could be treated as a primitive ran-
dom variable.

As a final comment, the model as given by Eqns (1) through (13) is such that the ductility
decreases with increasing temperature, which is consistent with experimental data in the range
25°C < T <~650°C. At higher temperatures though (T > ~650°C), it appears the ductility
begins to increase with increasing temperature, contrary to the current model (see the data on
page 88 of Ref [2]).

4)  Low Cyclc Fatigue
A strain-life approach is taken:

1{Ae”Y

where
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As? = plastic strain range,

N, = number of cycles to failure,
g, = half-cycle fatigue ductility, and
¢ = fatigue ductility exponent.

Some typical values of ¢ (taken from Ref [3], page 13) are given in Table 2 directly below.

Table 2

The low cycle fatigue behavior of austenitic stainless steels is quite complex, especially at
higher temperatures. Apparently, the mechanisms of cracking can be different depending on
temperature, frequency of cycling, and minor differences in alloy composition. Also, fatigue
limits may or may not exist. Thus, Eqn (14) is probably somewhat crude.

In any case, the quantity €, is usually on the order of the true strain at fracture ¢, . Fig 2

directly below (taken from Ref [1], page 256) shows ¢, and e, (e, = true strain at maximum
load) for 17 wt.-% Cr stainless as a function of Ni content at room temperature.
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The non-monotonic behavior on the left-hand side of the plot is due to the formation of strain-

induced martensite. For higher alloy contents though (marked by the thick, straight lines), the
difference between ¢, and e, appears to be constant (=¢,) . Thus, the relation

g,=e, +e, ~ (15)
is suggested, where ¢, = 0.90 at T = 25°C.. From page 100 of Ref [2], ¢, = 0.05 at T = 650°C.
So, a first approximation is

e,=0934-0.00136T, (16)
where T is the temperature in °C. The effects of temperature and previous cold work on €, can
be taken into account by calculating e, in Eqn (15) from Eqns (4), (8) and (13).

The primitive random variables of this low cycle fatigue model are RA and T. It may also

be desirable to make ¢ random. If one chooses to do this, then ¢ should probably exhibit more
variability at higher temperatures than at lower ones (as suggested by Table 2). Also, one should
be warned that this model does not take into account the effects of cycling frequency, which
could become fairly pronounced at higher temperatures. A phenomenological way of accounting
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" for the cycling frequency is outlined in Ref [3]. Finally, it is well-known that environmental

effects sometimes play an important role in low cycle fatigue behavior at elevated temperatures,
and this is not accounted for here.

5)  High Cycle Fatigue

A stress-life approach is taken:
N.= 1 S a > 1‘7
= 2 Sf ’ a7
where
S, = effective amplitude of stress,
N, = number of cycles to failure,
Sy = half-cycle fatigue strength, and
b = fatigue strength exponent.

Typical values of b (taken from Ref [3], page 13) are given in Table 3 directly below..

|
AISI 316 ﬂ -6.99 -8.55

AISI 348 -9.80 -7.63
Table 3

Mean stress effects are accounted for with the Goodman relation:

g0,
G, ~Cn

: | (18)

where
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c, =(1/2) (O pex = C i) = Stress amplitude,
G =(1/2) (O pax+ Cen) = Mean stress, and
o, = engineering ultimate tensile strength,
and

O oz = maximum stress, and

G rmim = minimum stress.

The quantity S, is usually on the order of the true monotonic fracture strength. Thus, a (probably)
conservative approximation is

S,=S, . . (19)
where

S, = true stress corresponding to ©, .

The effects of temperature, composition, etc., may be taken partially into account by calculating
the quantities §, and o, with Eqns.(1) through (13) of Section 3.

Some words of caution are now in order. Eqn (17) does not take into account the effects of
the cycling frequency. This may not be so bad though, since cycling frequency affects high cycle
fatigue less than it does low cycle fatigue. Also, one should be careful to ensure that Eqns (17)
through (19) produce the correct trends. On one hand, as temperature increases S, tends to
decrease, which tends to reduce the life. On the other hand, as seen from Table 3, b tends to
increase in magnitude as temperature increases for types 304 and 316 stainless, which tends to
increase the life (this presumedly is because higher temperatures tend to diffuse the slip behav-
ior). Thus, there appears to be two competing mechanisms, and one should ensure that the cor-
rect one dominates for the particular situation that happens to be under consideration.

6)  Eracture Mechanics Approach

Figs 3 (taken from pages 392 and 393 of Ref [5]) show the fatigue crack propagation char-
acteristics of types 304 and 316 stainless as a function of temperature. (Similar data for types 321
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and 348 stainless may also be found in Ref [5]). The data shown in the figures were obtained by
cycling at R =0 and 10 cycies per minute, where R = K/ K ax » K oia = the stress intensity factor
at minimum load, and K o, = the stress intensity factor at maximum load.
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As is evident by the "kinks" in the above curves of crack growth rate (4 ) vs. stress
intensity factor range (AK = K ooy ~ K i) » different mechanisms of growth are exhibited depend-
ing on AX and temperature. Also, as indicated by Fig 4 below (from page 396, Ref (3]), the
behavior at room temperature is quite insensitive to alloy composition, whereas at higher
temperatures, the behavior is quite sensitive to alloy composition. (The meaning of the thick,
parallel dashed lines in the figure will be described below). We now look at two different
methods of describing the fatigue crack propagation characteristics.
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The first method is quite simple in that the crack growth rate is assumed to follow a singie
Paris-type equation:

a=C(AK)" ,

where

a

AK
C
n

= crack growth rate (here, units = in/cycle),

= stress intensity factor range (here, units = ksi Vin),

= Paris coefficient, and

= Paris exponent.
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In Fig 4, the width of the scatter is marked approximately by the thick, parallel dashed lines of
slope 7 = 3.2. The scatter at 1100°F appears to be ~ 2.5 times that at 77°F . This may be
expressed as

c

— =0.8871+0.001466T , | (21)
Oc

where

Lo P = standard deviation of the Paris coefficient C,

oo =G at 77°F, and

T = temperature in °F.

Using the points A and B in Fig 4 to calculate C, one obtains logC =—9.88 at 77°F and
logC =-9.12 at 1100°F. If these are taken to be indicative of the mean values, then (approxi-
mately),

logp, =-9.937 +0.000 74297, (22)
where

Ke = mean of the Paris coefficient C , and

T = temperature in °F.

Thus, a reasonable random fatigue crack propagation law is obtained if C in Eqn (20) is
described by Egns (21) and (22), and if in Eqn (20) '

n=32 (23)
is used.
A couple of comments on this first method are now in order. First, T should not be ran-

dom, since if it were, the statistics of C would be random. Also, besides C , the other random
variables of the model would be g; (an initial flaw size) and a, (a final or failure flaw size).

A second method is now described and illustrated for the type 304 stainless depicted in
Fig 3a. As is evident, there are two distinct regimes of behavior: a low AX regime and a high
AK regime. Let the low AK regime be defined by
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a,=C,(AK)" , (24)
and the high AKX regime by
a,=C,(AK)" (25)

where here, as before, 4, and &, have units in/cycie and AK has units ksiin. The values of C,,
n,,C, and n, given in Table 4 below fit the data in Fig 3a quite well.

. Table 4

From Table 4, the following least square linear fits are obtained:
logC,=0.0029038T -9.9563 |,
logC,=0.0135T -23452 ,

n,=-0.0017986T +3.252 ,

n,=-0.0083333T +11.967 , (26)
where T is in °F. Thus, for type 304 stainless, random Paris-type behavior is achieved by letting
T in Eqns (26) be random, and by calculating d from |
d =max(ad,,a,) . @
As before, the initial and final flaw sizes (a; and a,) may also be random. Similar procedures can
be used to describe the fatigue crack growth characteristics of other series 300 steels.

In summary, for Paris-type behavior, AK is a function of the stress range Ao and the flaw
size a , and the growth rate ¢ is a function of AKX :
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AK=AK(Ac,a) , a=a4(AK) . (28)

Now, it is assumed that the major effect of microstructure is to cause the so-called "anoma-
lous” short crack behavior. If g is less that some microstructurally determined value a,,, then the
crack growth rate is "anomalously” high. The parameter a, is approximately

a,=5d , 29)
where d is the grain size. Thus, to account for the short crack behavior, a is calculated as fol-

lows: (i) if a > a,,, then the Paris-type relations (20) through (23), or (24) through (27), are used;
(ii) if a <a,, then 4 is given by

AK,=AK(Ag,a,) , a=4d(AK,) . (30)
Of course 4, or equivalently a,, may be random.

7 Creep Rupture
Describe the time to rupture with the Larson-Miller parameter (Ref [6], page 164):

_P(o)
logtr=77773 %Y - Gb
where
tr = time to rupture in hours,
T = temperature in °C,
Y = a material property,
c = applied stress, and
P = Larson-Miller parameter.

Note that Y varies somewhat from material to material, and that Y = — 18 for

18 wt.-% Cr—8 wt.-% Ni stainless steels (AISI types 301, 302 and 304). Additionally, P is pro-
portional to the activation energy required for creep, and thus, also conceivably varies from
material to material. Note that P is an experimentally determined function of stress ( P usually
decreases with increasing stress).
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Before discussing how Eqn (31) should depend on microstructure and composition, it
should be mentioned that Chapter S (pages 233-353) of Ref [2] gives a fairly thorough overview,
with over 400 references, of the creep behavior of austenitic stainless steels. What is evident
from the overview is that the creep behavior of these materials is fairly complex. The mecha-
nisms under which creeping occurs, and hence the overall creep behavior, can depend sensitively
on grain size, temperature, applied stress, composition, previous cold working and previous
ageing.

It is known that small amounts of cold work (up to ~20% ) can increase creep resistance.
Larger amounts of cold work, though, can actually decrease creep resistance by promoting
recrystallization. Previous ageing which results in precipitation hardening also increases creep
resistance, but overageing reduces it. Incorporating these effects into a simple model is difficult,
and will not be artempted here (it appears that a more involved, unified approach would be
required).

An approximate method to account for the effects of composition is now illustrated. From
Ref [2] (page 260), for AISI 304 stainless at 650°C:

6,=90.81+115(Mo)+498.5(W) , (32)
where

C. = stress (in MPa) corresponding to 1, = 10 h,

(Mo) = wt.-% molybdenum, and

(W) = wt.-% tungsten.

Formulae giving G, for other temperatures, and for AISI 316, may also be found on page 260 of
Ref [2]. Now, Eqn 32 (or something similar) can be substituted into Eqn (31) to construct the
approximate dependence of ¥ on composition:

P(c.)
923

.Y =Y (composition) =4 - 33)

A word of caution is in order. Note that Eqn (32) is based on 75 = 10* h, while times of interest

for the SSME are undoubtedly much less. Obviously, finding or constructing a formula like
Eqn (32) based on ¢, = 10-100 h would be more desirable. Also, substituting Eqn (32) into
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Eqn(31) to obtain Eqn (33) assumes that the activation energy for creep is independent of com-
position (which cannot be entirely true). Nevertheless, trends for 7, predicted by using Eqn (31)
along with a relation constructed similarly to Eqn (33) should be basically (or at least
qualitatively) correct.

The effect of varying temperature and applied stress is to cause different mechanisms of
Creep to activate and deactivate. The mechanism which dominates for a particular stress-
temperature regime can be determined from "deformation mechanism maps” (such as those in
Chapter 5 of Ref [2]). The effect of grain size (d ) on creep resistance depends on the particular
mechanism which happens to be active. For dislocation controlled (or power-law) creep, which
tends to be active at higher stresses and lower temperatures, the effect of grain size is relatively
weak (Ref [7]), and probably can be neglected. For diffusive creep though, the effects of grain
size can be significant. In the case of Nabarro-Herring (or volumetric diffusion) creep, fyoed ?;
and in the case of Coble (or grain boundary diffusion) creep, zpo<d® (Ref [6], pages 148-149).

In line with the above discussion, a simple time to rupture model which incorporates the
effects of temperature, composition and grain size is as follows. First, for a steel with reference
composition and reference grain size (d,), determine the function P = P () and the value of Y
in Eqn (31) from experimental data (call the value of Y so determined Y,) . Next, using an equa-
tion like (32), determine a relation like (33), i.e., Y =Y (composition ), where
Y, =Y (reference composition ). The time to rupture including the effects of temperature and
composition is then

P(o)
T+273

logt, = +Y (composition) . (34)

Grain size is taken into account by

[ L4
L2

tp d—o

where

d = grain size,

dy = reference grain size,
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PROBABILISTIC ANALYSIS OF STRUCTURES INVOLVING RANDOM STRESS-STRAIN BEHAVIOR

H. R. Millwater+', S. V. Harren++", B. H. Thacker+™
+ Southwest Research Institute, San Antonio, Texas
++ The University of Ilinois at Chicago, Chicago, Illinois

Methodojogy

This methodology characterizes the uniaxial
engineering stress-strain curve shown in Figure | by five

g€)=1 g()=0 g'(g)=0 g'(e)=0
8:(6)=0 gE€)=1 g'ye)=0 g'(e)=0 )

engineering parameters. The parameters are
»  Elastic modulus (E)
« Engineering stress at initial yield (6,)
*  Initial plastic hardening slope (4,)
« Engineering stress at point of ultimate load (5,)
+  Engineering strain at point of ultimate load (€,)

¢ ZERO SLORE
i SO
i
\ :
Q. +=- 1
’ : & CUBIC '
. POLYNOMIAL !
: i
! 1
E 1
1 ]
f N
g &
=g,/E

Figure 1. Uniaxial Engineering Stress-Strain Curve
Uncentainties in the stress-strain behavior of a structure can
then be simulated by letting these parameters be random.
Perturbations in the stress-strain curve, needed to obtain
sensitivities, are then simulated by perturbationsin the these
parameters.

The approximations are given below in equation
form.

oE)=Ee O<e<g, (1)

0(€)=0,8,(e)+0.2,(€) +h 2,(8) e<e<e,

where ¢, =c,/E and g(i=1,2,3) are the cubic
polynomial shape functions. The boundary conditions are
o(€,) =0,,0(¢,)=0,,0(g,)=h,, and 0'(e,)=0. The last
boundary condition enforces the slope at the ultimate strain
to be zero. Applying these four boundary conditions
determines the cubic shape functions uniquely. The
boundary conditions in terms of g,’s are:

*Member AIAA, ASME
**Member AIAA

8(€)=0 g€)=0 g'\e)=1 g'\()=0
Solving the equations for the polynomial

coefficients yields
g©=22"-32+1
g.(€)=-22>+37*

Eg -0, &
&©) = E“E 2(2’~22%+2)
Ee-o, .
where z = varies from O to |.
Ee,-o0,

In order to define the hardening characteristics of
the material for a small strain analysis, the uniaxial curve
is defined for NESSUS/FEM in terms of engineering stress
o vs. plastic engineering strain ¢’. For a small strain
analysis, NESSUS/FEM also requires that the curve of
engineering backstress o vs. €” be entered. In this model,
® is given by the simple relation

®0=x(c-0,) @

where x determines the type of hardening. x =0
indicates isotropic hardenming, x =1 indicates kinematic
bardening, and 0 < x < ! corresponds to a mixed hardening
rule.

If a finite deformation analysis is to be performed,
itis more appropriate to enter the hardening description into
NESSUS/FEM in terms of true stresses and strains. In this
case, the uniaxial hardening curve is prescribed in terms of
true stress S vs. plastic true strain e”,

___E(l+epe
" (E +0)(E -vo)

5
" =1lo E+Ee )
- E+o

In summary, the hardening model for
NESSUS/FEM is defined completely by seven parameters:
five from the description of the stress-strain curve, i.e.,
E,q,,h, 0, and¢,; one from the introduction of backstress,
i.e., © and one from the introduction of true measures for
finite deformation analysis. i.e.. v. Poisson's ratio.

)
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Restrictions on Stress-Strain Parameters

Obviously, the statistics of the seven parameters cannot be
prescribed arbitrarily, since meaningiess hardening curves
may result. Certain restrictions must be imposed on the
engineering parameters in order to ensure that a physically
reasonable stress-strain model will resuit from the cubic
polynomial. In particular, we want to ensure that the
stress-strain curve is monotonically increasing,
o, <o(g) <o, for g, <€ <§,, and that it is convex upward,
0”(e) < Ofore, < € < &,. Mathematically, this can be written
as

o) =

Ee,-o, {3(h,—2h)x—(2h, -3h)} <0 (6)

where
E{c,-0,)
= Fe o, M
Ee-o,
Ee -0,

x= ®

The restrictions become
1, E@.-0,) 2
3h, < Ee,-o, <3h,,
These conditions will ensure that the stress-strain curve is
monotonically increasing and convex upward for
€, <E<E,.

Transformation to More Natural Parameters

Because of the restrictions on the stress-strain parameters,
the limits of some random variables depend on the limits
of other random variables. In order to alleviate this
situation, a set of new parameters, X,’s is developed such
that the limits of these new parameters are constants. These
new parameters are:

E>0,0, >o,,o,>0 (¢)]

X =279 2
' Eg -0, 37
E(c,-0,) 1|
Xz=—EET—3 l,
X;=0,-0, (10
X,=o,
X,=E
X,=v
X, =K

or inversely,

E =X,
o, =X,
h, =3(X, +X,)
o, =X,+X,
X, X,
&Y+, X,
v=X,

x=X,

The two new parameters, v and X, are necessary to
complete the iption of the stress-strain curve to
US and can be random. Thus, the original
engineering parameters are transformed into more natural
parameters, X,’s. The relationship and its inverse, although
not linear, is easy to determine.
The restrictions on the X,’s are now simple:
X,>0 (i=123,4,5)

1
-1 SX,SE

0sX, <1

Correlation Among Parameters
The curmrent version of NESSUS requires
statistically independent random variables. However, in
general the engineering parameters and E,0,,0,,4,,€,,V,
and xor X;"s will most likely be correlated. Thus, a general
procedure to handle correlated nonnormmal variables has
been developed. The comrelated variables X,’s are
transformed to independent, uncorrelated variables Z,’s.
The is based on the Nataf transformation [9,10]
and 1s an extension of the method discussed in [6]. This
method constructs a joint probability density function for
the X;’s which satisfies their marginal distributions and
correlation coefficients. The Nataf transformation is valid
forany continuous marginal distribution although the initial
implementation has been set up for lognormal, nommal,
Weibull, Frechet, and Extreme Value distributions only.
The random field problem, i.e., the random stress-strain
Eammeuets varying spatially over the structure, can be
andled with this method, but, it is not presently
implemented in the code.

Summary of Transformation Procedure
*  Compute statistics for the X,’s. These can be obtained
directly from the experimental results of stress-strain

curves.
to independent

(11)

(12

«  Transform the correlated X:'s
uncorrelated variables Z,’s.

232



Sojution Procedure

The solution procedures already present in
NESSUS can be used to analyze structures with random
stress-strain response. Thus, the probabilistic analysis
capabilities already developed can be utilized. The steps
necessary to compute the probabilistic response of a
structure are outlined below.

¢ Define the structure to NESSUS by constructing a
finite element model.

*  Define which quantities are the random variables along
with the statistical information, mean, standard
deviation, and distribution type for each random
variable. The distribution type must be continuous and
can be chosen as: uniform, normal, lognormal,
Weibull, extreme value, maximum entropy, Frechet,
truncated normal, and truncated Weibull.

*  Select the response to analyze, i.e., displacement,
frequency, buckling, fatigue, etc. The response may
involve coupling the finite element results with
resistance models(11). If so, a predefined response
from a NESSUS library may be selected or the user

may program his own.
* Select the probabilistic method options and the
cumulative distribution output points.
Specification of Stress-Strain Curve to NESSUS

The specification of the stress-strain curve to
NESSUS can be done easily in the user-written subroutine
UWKSL. This subroutine has on input the equivalent
plastic strain value, the temperature at the node, the node
oumber and the X; values. The equations which

parameterize the stress-strain curve in terms of a cubic
polynomial are then used to compute the yield stress at this
plastic strain, the slope of the work hardening curve, and
the backstress value. The NESSUS probabilistic algorithms
perturb the X,’s in order to compute sensitivities and pass
the perturbed values to UWKSL. The perturbed
stress-strain curve is computed using the same equations as
before. A representative UWKSL routine is given in the
appendix.

Example Problem

Anexample problem is analyzed to demonstrate the
capabilities of the code. The problem analyzed is that of a
thick cylinder under internal pressure, Figure 2. The
internal pressure and the stress-strain curve are random.

d

rpu20in

di=t0n

Figure 2. Thick-walled Cylinder Under Internal Pressure

The stress-strain parameters are represented by lognormal
distributions. In general, these parameters are correlated;
however, for this example they are assumed independent.
The cumulative distribution function of the equivalent
plastic strain at the inner radius is computed. In addition,
the sensitivities or reiative importance of the random
varisbles is computed.

The random variables statistics are shown in Table
1. The statistics are chosen to be of a typical steel.

Variable Mean Standard
Deviation

X, 39.007 ksi 4.0 ksi
X, 44.326 ksi 6.5 ksi
X, 10. ksi 2.0ksi
X. 50. ksi 5.0 ksi
X, 30,000. ksi 1,500. ksi
X 03 0.
X, 0.5 0.

pressure 1924 9.61

Table 1
Solution Procedure

The advanced mean value (AMV) solution
procedure is used o compute the CDF. This procedure has
the advantage of accurately icting the cumulative
distribution function, even for highly nonlinear probiems,
with a small number of finite element calculations{1,6].

First-order analysis was chosen for this problem.
The mean value first order (MVFO) and advanced mean
value first-order (AMVFO) methods were used to co;:rne
the CDF of the equivalent plastic strain at the inner radius.
Because this is a nonlinear analysis, the cylinder is loaded
incrementally by 5% load increments.
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Step 1 establishes a database of the random variable
sensitivities about the mean value. This database was
computed for ten increments and therefore can be used
when computing the CDF at any of the ten increments.
Approximately seven nonlinear finite element solutions
were needed for this step, one deterministic, and one for
each random variable.

Perturbations of the stress-strain curve are

computed by perturbing each random variable
independently. The perturbed stress-strain curves are
shown in Figure 3.

65.0

T ¥ L] LS L) L) r ¥ 1
000 001 002 003 004 00S 008 0O7 008 009
e

Figure 3. Perturbed Stress-Strain Curves

Step 2 is to com the MVFO solution and the
most pmmle points (MPP’s) at the desired increments by
using the sensitivity data and the fast probability method.
This re does not mnixe finite element analysis and
is !mmlly done very 1ui y. Thus, the MVFO calculation
of the CDF can be obtained at a number of increments,
structural locations, etc., ine ively once the sensitivity
database has been establi

Step 3 is to update the MVFO solution using the

method. The AMVFPO method involves

computing a finite element solution at the MVFO predicted
most probable point. Note, the MPP's will in general be
different for each incremeat and each probability level.
Thus, if the solution was desired for four increments and
ten probability levels, the number of finite element analyses
would be, 4*10 = 40,

Purthersteps whichinvolve new sensitivity analysis
can be taken to check the AMYV solution. However, asimple
study at one increment showed the AMV method to be
accurate.

Resuits

The CDF results for loading increment 8 are shown
in Figure 4. The mean value of equivalent plastic straip at
this increment is 5.71E-4. We see from the figure that the
MVFO solution predicts negative equivalent plastic strain
forlow probabilities. Forexample, atu =-5, oraprobability
of 2.87E-7, the predicted equivalent plastic strain is -.0014
infin. Physicaily, this is not possible. The MVFO solution

is not accurate in this region because it is using sensitivities
about the mean value and does not know the physical
impossibility of negative equivalent plastic strain.

CDF of Equivaient Plastic Strain

(Increment 8)
[}
s L}
4
)
H
1]
L]
- *
- -2
z » *—- mvie
amvie
-+
$
<
-0.002 0001 .0.000 0.001 2.002 0.003

Equivalent Plastic Strain

Figure 4. CDF of Equivalent Plastic Strain at Increment 8§

The AMVFO method is used to the MVPO
solution and correctly accounts for ities in the
response. Thus, the AMVPO solution predicts zero
equivalent plastic strain for low probabilities and comrectly
predicts the truncated form of the distribution.

Figure 5 shows the cumulative distribution function
of the equivalent plastic strain calculated at several load
increments, in effect showing the bebavior of the CDF as
a function of loading. The distributions behave similarly
with the truncated effect becoming less pronounced with
increasing load as expected.

CDF of Equivalent Plastic Strain
(Increments 4, 6, 8. 19)

> w oaaw s

Probobeinty 1sndard sevietions;

Y A

Equivetons Plassic Sicain

0002 0803 0004

F'ngutse 5. CDF’s of Equivalent Plastic Strain at Increments
4,6,8,10

The probabilistic sensitivities are computed by
NESSUS ateach gerobability level and each load increment.
Figure 6 shows the probabilistic sensitivities at u = +3, or
probability = .9987. for increments 4 and 10. The random
variables, g, - yield stress, E - elastic modulus, and initial
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load dominate the probabilistic solution. The initial load
becomes more dominate as the loading increases. The
random variables, x1, x2, and x3 are related to the hardening
slope, the ultimate stress, and ultimate strain, and have litte
effect at these low strains.

1.0

Probabilistic Sensitivitics

load

oy E

l’;ig:_r,;& Probabilistic Sensitivity Factors atu=+3 (p=

Concinsions

In summary, a method of characterizing random
stress-strain behavior with a small pumber of random
variables has been devel This capability has been
integrated into the probabilistic finite element analysis code
NESSUS. This system allows the userto petform advanced
probabilistic and reliability analysis on complex
;en!glingering structures which exhibit nonlinear material

vior.
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APPENDIX C

NESSUS Component Reliability Validation Problems
H.R. Millwater

B.H. Thacker
Southwest Research Institute

Appendix C.1
Displacement of a Tilted Response
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PRECEDING PAGE BIANK NOT FILMED

NESSUS 5.0 Response Model Validation
1) Displacement Limits
Purpose:
Demonstrate structural reliability with respect to displacement limits.
Response:
The response is the displacement interference between the tip displacement of the beam, node
31, and a displacement limit d,, which is also random.

8§=0d,~dyp
Note, because the mean value magnitudes of d, and d,... are negative, the g function is reformulated as
8*==8 =dien—d,
When using the reformulated function, the prabability of failure or P (g * < 0] is in the left tail as expected.

Model:

A 10 x 2 cantilever beam composed of 20 plane stress elements is shown in Figure 1. The random
variables are shown in the table below.

Variable Mean St. Dev. Distribution
End Load -100 Ibf 20 Ibf Normal
Young’s Modulus 10.E6 psi 2.E6 psi Lognormal
Response Limit -0.025in 0.0015in Normal

Special Features:

Because of the tilted position of the beam, the desired response is the displacement perpendicular
to the beam axis as shown below. Thus, the CVARIABLE option is used to rotate the computed
displacements immediately after FEM and before probabilistic analysis. Also, note the decomposition
of the end load of the beam into x, y components when applied to the beam and in defining the force
random variable.

Results:

The results were computed using the reliability algorithm, ZLEVEL, in NESSUS 5.0 and
compared to the results using the PLEVEL algorithm. In addition, Monte Carlo results for the analytical
equation are shown.

5
239 % 3 VAR 1T IRt N S S |



PFEM INPUT DECK(S)

*PFEM

*MVDEF INE
*DATATYPE
*RESPTYPE

*COMP
*PERT
1,2,3

*RANVAR

1,2,3
*COND
*NODE

*END

*AMVDEF INE

*COMP
*NODE
*ITER
S
*END
*2FDEFINE

*COMPUTATIONALMODEL 1

1,2
*EXPLIC
3

*ZFUNCT

*CVARIABLE

TRANSFORMATION
30.0

0.0

0.0

b
2
3
END
*END
*RVDEFINE

*DEFINE

ENDLOAD
-100.0

FORCE
33
33
32
32
31
31

2PNNHEOEN

*DEFINE

EMOD
10.E6
PROP

1 33

2

*DEFINE

DELTAC
-0.015
*PERT

1 0.1
*PERT

2 0.1
*PERT

3 0.1
*END
*END
*FEM

C TILTED
c

c

20.

0.0025

ITMODEL
2

1 1 0

0

1

1 rotate about the x axis by 30 degrees

1

0 NORMAL negative mean is ok for normal

notice force random variable definition

.216506
-.125

.433013
-.250

.216506
-.125

2

LOGNORMAL
151
0.0

.E6

1.0 0.0

3

0.0015
1

NORMAL

2
3

CANTILEVER BEAM DISPLACEMENT MODEL
response is the tip displacement
note: rotation is needed to compute tilted displacement
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*DISP
*CONS
*ELEMENTS
151
*NODES
*BOUND
*FORCE
*PRINT
*MONIT
*END
*MONITOR
TOTALDISP
TOTALDISP
TOTALDISP
TOTALDISP
TOTALDISP
TOTALDISP
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE

0

3
6
6

20
3

12

NODE 33
NODE 33
NODE 32
NODE 32
NODE 31
NODE 31
NODE 33
NODE 33
NODE 32
NODE 32
NODE 31
NODE 31

*ITER 0 2

820

1.E-6

*COORDINATES

*ELEMENTS

YW BN

0.000000E+00
=.500000E+00
-.100000E+01
0.866025E+00
0.366025E+00
~.133975E+00
0.173205E+01
0.123205E+01
0.732050E+00
0.259807E+01
0.209807E+01
0.159807E+01
0.346410E+01
0.296410E+01
0.246410E+01
0.433012E+01
0.383012E+01
0.333012E+01
0.519615E+01
0.469615E+01
0.419615E+01
0.606217E+01
0.556217E+01
0.506217E+01
0.692820E+01
0.642820E+01
0.592820E+01
0.779422E+01
0.729422E+01
0.679422E+01
0.866025E+01
0.816025E+01
0.766025E+01
151
28 31
29 32
25 28
26 29
22 25
23 26

COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT

HNENENERDPRD-N

0.000000E+00
0.866025E+00
0.173205E+01
0.500000E+00
0.136602E+01
0.223205E+01
0.100000E+01
0.186602E+01
0.273205E+01
0.150000E+01
0.236602E+01
0.323205E+01
0.200000E+01
0.286602E+01
0.373205E+01
0.250000E+01
0.336602E+01
0.423205E+01
0.300000E+01
0.386602E+01
0.473205E+01
0.350000E+01
0.436602E+01
0.523205E+01
0.400000E+01
0.486602E+01
0.573205E+01
0.450000E+01
0.536602E+01
0.623205E+01
0.500000E+01
0.586602E+01
0.673205E+01

32 29
33 30
29 26
30 27
26 23
27 24
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7 19 22 23 20
8 20 23 24 21
9 16 19 20 17
10 17 20 21 18
11 13 16 17 14
12 14 17 18 15
13 10 13 14 11
14 11 14 15 12
15 7 10 11 8
16 8 11 12 9
17 4 7 8 5
18 5 8 9 6
19 1 4 5 2
20 2 S 6 3
c
o fix left end
*BOUND
1 1 0.0
1 2 0.0
2 1 0.0
2 2 0.0
3 1 0.0
3 2 0.0
Cc
*PROP 151
1 33 1.0 10.E6 0.0 0.0 0.0
Cc
(o total load is 100 at 45 degree angle
*FORCE
33 - 2 =-21.6506
33 1 12.5
32 2 -43.3013
32 1 25.0
31 2 =21.6506
31 1 12.5
*PRINT
TOTAL NODE
STRESS NODE
*END
*FPI
TILTED BEAM
*RVNUM 3
*DATASETS 4
*GFUNCTION 1
*METHOD 1
*ANALTYPE 1
*PRINT 0
*END
*ZLEVELS 1
0.0
*END
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PFEM INPUT DECK (CLOSED-FORM)

*PFEM
*MVDEF INE
*DATATYPE
*RESPTYPE
*COMP
*PERT
1,2,3
*RANVAR
1,2,3
*COND
*NODE
*END
*AMVDEFINE
*CoMP
*NODE
*ITER

5 .

*END
*ZFDEFINE

0025

*EXPLICITMODEL 3

123
*ZFUNCT
1.0175

*UZFUNC

*END

*RVDEF INE
*DEFINE

ENDLOAD

-100.0 20.0
*DEFINE

EMOD

10.E6 2.E6
*DEFINE

DELTAO

-0.015 0.0015

*PERT 1

1 0.1

*PERT 2

2 0.1

*PERT 3

3 0.1

*END

*END

*FPI

TILTED BEAM

*RVNUM

*DATASETS

*GFUNCTION

*METHOD

*ANALTYPE

*PRINT

*END

*ZLEVELS

0.0

*END

1

1

NORMAL
2

LOGNORMAL
3

NORMAL

OHFPAW

pay
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Figure 1.

Deterministic Solution of Tip Displacement

The tip displacement of the beam should be close to the analytical solution for the Euler-Bemoulli
beam

PL® _ (-100)10°
3EI ~  3(10E6)(1/12)(1)(2)°

The computed result is -0.0050875 in. The FEM model includes shear deflection whereas the
Euler-Bemnoulli solution does not.

The reliability computed using the AMV based reliability algorithm with a finite element model
and with the closed form equations, and the Monte Carlo solution on the closed-form equation is shown
below.

8 = = -005in.

MVFO 4971 | 3336E-7
Quad Est 1 -4.279 9.393 E-6
Quad Est 2 -4.234 1.149 E-5
Iteration 1 -3.969 3.610E-5
Iteration 2 -3.823 6.594 B-5
Iteration 3 -3.812 6.895 E-5
Iteration 4 -3.811 6.923 E-5
Monte Carlo, #25000, Harbitz

Method -3.783 7.750 E-§
PFEM closed-form -3.811 6.923 E-5
FPI gfunct 6 -3.708 1.045 E4
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PFEM INPUT DECK(S)

*PFEM
*MVDEF INE

*DATATYPE

*RESPTYPE

*CoMpP

*PERT 3
1,2,3

*RANVAR 3
1,2,3

*COND 0

*NODE 32
*END
*AMVDEFINE

*CoMp 2

*NODE

*ITER

S 0.0025

*END
*ZFDEFINE

*COMPUTATIONALMODEL 1 2
1,2

*EXPLICITMODEL 1 1 O
3

N=O

*ZFUNCT 2 (o] the z function is pre-programmed as NESSUS model
2
*CVARIABLE 1
TRANSFORMATION 1 rotate about the x axis by 30 degrees
1 30.0
2 0.0
3 0.0
END
*END
*RVDEFINE
*DEFINE 1
ENDLOAD
-100.0 20.0 NORMAL negative mean is ok for normal
FORCE notice force random variable definition
33 it .216506
33 1 -.125
32 2 .433013
32 1 -.250
31 2 .216506
31 1 -.125
*DEFINE 2
EMOD
10.E6 2.E6 LOGNORMAL
PROP 51
1 33 0.0 1.0 0.0 0.0 0.0
*DEFINE 3
DELTAQ
-0.015 0.0015 NORMAL
*PERT 1
1 0.1
*PERT 2
2 0.1
*PERT 3
3 0.1
*END
*END
*FEM
C TILTED CANTILEVER BEAM DISPLACEMENT MODEL
c response is the tip displ.. .ent
o note: rotation is needed Lu compute tilted displacement
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*DISP
*CONS
*ELEMENTS
151
*NODES
*BOUND
*FORCE
*PRINT
*MONIT
*END
*MONITOR
TOTALDISP
TOTALDISP
TOTALDISP
TOTALDISP
TOTALDISP
TOTALDISP
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE

0

3
6
6

20
3

12

NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE

33
33
32
32
31
31
33
33
32

31
31

*ITER 0 2

820

1.E-6

*COORDINATES

VOIS WND+-

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
*ELEMENTS

[ SN g

oaWnbWw

0.000000E+00
-.500000E+00
-.100000E+01
0.866025E+00
0.366025E+00
-.133975E+00
0.17320SE+01
0.123205E+01
0.732050E+00
0.259807E+01
0.209807E+01
0.159807E+01
0.346410E+01
0.296410E+01
0.246410E+01
0.433012E+01
0.383012E+01
0.333012E+01
0.519615E+01
0.469615E+01
0.419615E+01
0.606217E+01
0.556217E+01
0.506217E+01
0.692820E+01
0.642820E+01
0.592820E+01
0.779422E+01
0.729422E+01
0.679422E+01
0.866025E+01
0.816025E+01
0.766025E+01
151
28
29
25
26
22
23

31
32
28
29
25
26

COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPCONENT
COMPONENT
COMPONENT

NN R-N

0.000000E+00
0.866025E+00
0.173205E+01
0.500000E+0Q0
0.136602E+01
0.223205E+01
0.100000E+01
0.186602E+01
0.273205E+01
0.150000E+01
0.236602E+01
0.323205E+01
0.200000E+01
0.286602E+01
0.373205E+01
0.250000E+01
0.336602E+01
0.423205E+01
0.300000E+01
0.386602E+01
0.473205E+01
0.350000E+01
0.436602E+01
0.523205E+01
0.400000E+01
0.486602E+01
0.573205E+0C1
0.450000E+01
0.536602E+01
0.623205E+01
0.500000E+01
0.586602E+01
0.673205E+01

29
30
26
27
23
24

246



7 19
8 20
9 le
10 17
11 13
12 14
13 10
14 11
15 7
16 8
17 4
18 5
19 1
20 2
c
c
*BOUND
1 1 0.0
1 2 0.0
2 1 0.0
2 2 0.0
3 1 0.0
3 2 0.0
c
*PROP 151
1 33 1.0
c
c
*FORCE
33 2 -21.6506
33 1 12.5
32 2 =43.3013
32 1 25.0
31 2 =-21.6506
31 1 12.5
*PRINT
TOTAL NODE
STRESS NODE
*END
*FPI
TILTED BEAM
*RVNUM 3
*DATASETS 4
*GFUNCTION 1
*METHOD 1
*ANALTYPE 1
*PRINT 0
*END
*ZLEVELS
0.0
*END

fix left end

10.E6

23
24
20

17
18
14
15
11

—
AnnYoN

0.0

20
21
17
18
14
15
11

[
WAL ODON

0.0

0.0

total load is 100 at 45 degree angle
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PFEM INPUT DECK (CLOSED-FORM)

*PFEM
*MVDEF INE
*DATATYPE
*RESPTYPE
*Ccomp
*PERT
1,2,3
*RANVAR
1,2,3
*COND
*NODE
*END
*AMVDEFINE
*COMP
*NODE
*ITER

S 0.

*END
*ZFDEFINE

0025

*EXPLICITMODEL 3

123
*ZFUNCT
1.0178
*UZFUNC
*END
*RVDEF INE
*DEFINE
ENDLOAD
-100.0 20.0
*DEFINE
EMOD
10.E6 2.E6
*DEFINE
DELTAQ
-0.015 0.0015
*PERT 1
1 0.1
*BPERT 2
2 0.1
*PERT 3
3 0.1
*END
*END
*FPI
TILTED BEAM
*RVNUM
*DATASETS
*GFUNCTION
*METHOD
*ANALTYPE
*PRINT
*END
*ZLEVELS
0.0
*END

1

1

NORMAL
2

LOGNORMAL
3

NORMAL

O = W
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Appendix C.2
Probabilistic Buckling Analysis of a Simply-Supported Beam

Buckling Limits
Introduction

This example demonstrates the computation of structural reliability with respect to buckling limits.
The probability of the first buckling load of a simply supported beam exceeding a user-defined limit is
computed and compared with the exact solution.

Analytical or Exact Solution
The limit state, or g function, is defined as
A, — Ay, Where A, is a user-defined buckling limit and A, is the buckling load of the beam.

The Euler-Bemnoulli solution for the buckling load is A, = %

Reference:
G. J. Simitses, An Introduction to the Elastic Stability of Structures, Prentice-Hall, 1976.
Modeling and Methods

A 10-in. simply supported beam composed of 20 beam elements, type 98, is shown below. The
cross-section is circular with inner and outer radii. The random variables are shown below.

Variable Mean St. Dev. Distribution
Inner Radius 1 015 Normal
Outer Radius 2 02 Normal
Beam Length 10 5 Lognormal
Buckling Limit 3800 0.1 Normal

Notice that the variance of the buckling limit is sufficiently small as to be considered
deterministic.

025 The AMYV iteration tolerance was set at 0.25%. The FEM iteration tolerance was also set at
25%.

Results and Discussion
The results were computed using the reliability algorithm, ZLEVEL. The simple response

function z = -2, is programmed into NESSUS as model 1 and was used for this analysis. The

reliability solutions using the closed-form equations were obtained using three different methods:
Monte Carlo, FPI (Gfunction 6), and PFEM. Convergence was obtained using ZLEVEL after 2
iterations. The closed-form equations were adjusted by the ratio of the NESSUS/Theory buckling
loads computed at the mean value.
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Deterministic Response

A

e P

MVFO

Quad Est 1 -3.662 1.252 E4
Quad Est 2 -3.079 1.039 E-3
Iteration 1 -3.137 8.535E4
Iteration 2 -3.135 8.593 E4
Monte Carlo, #25000, Harbitz

Method -3.155 8.026 E4
PFEM closed-form -3.130 8.741 E4
FPI gfunct 6 -3.103 9.579 E-4
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PFEM Input Decks

PFEM input decks for ZLEVELS solutions using finite element model and closed form equations
are shown below.

PFEM input deck - FEM model

*PFEM
*MVDEF INE
*COND 1 lst eigenvalue
*DATATYPE 1 modal analysis (buckling)
*RESPTYPE 30 response is the eigenvalue
*COMP 1 1 has no meaning for eigenvalue
*NODE 1 1 has no meaning for eigenvalue
*PERT 4
1,2,3,4
*RANVAR 4
1,2,3,4
C *REST 1
*END
*AMVDEFINE
*COND
*COMP
*NODE
*ITER
5 0.0025
*END
*ZFDEFINE
*COMPUTATIONALMODEL 1 3
1,2,3
*EXPLICITMODEL 1
q
*ZFUNCT 1 0 uses {do = d} as zfunction
*END
C - o e i A s e . e .
*RVDEFINE
*DEFINE 1
RO

-
e

0.2 0.02 NORMAL
BEAMSECTION 3
1 21 1.0 0.0

c_
*DEFINE 2

RI

0.1 0.015 NORMAL
BEAMSECTION 3

1 21 0.0 1.0

c
*DEFINE 3

LENGTH

10.00 0.5 LOGNORMAL

COORDINATES
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 .05 0.0 0.0 0.0 0.0
3 0.0 .10 0.0 0.0 0.0 0.0
4 0.0 .15 0.0 0.0 0.0 0.0
5 0.0 .20 0.0 0.0 0.0 0.0
6 0.0 .25 0.0 0.0 0.0 0.0
7 0.0 .30 0.0 0.0 0.0 0.0
8 0.0 .35 0.0 0.0 0.0 0.0
9 0.0 .40 0.0 0.0 0.0 0.0
10 Q.0 .45 0.0 0.0 0.0 0.0
11 0.0 .50 0.0 0.0 0.0 0.0
12 0.0 .55 0.0 0.0 0.0 0.0
13 0.0 .60 0.0 0.0 0.0 0.0
14 0.0 .65 0.0 0.0 0.0 0.0
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NORMAL

C - SOA BUCKLING MODEL - PINNED COLUMN

*FEM
*DISP
*CONS O
*BUCKLE
*FORCE
*BOUND

1

*BEAMSECTION

20

*ELEMENTS

98
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20 2
*PROP 98
1 21 1.0
*BEAMSECTION
1 21 0.2
*BOUND

N WD W -
OCOO0O0O00O0O0O
© o o o o « s & o
[eJoNoNoleYoNoYoNal

»
o)
o]
=
(2]
]

21 2 -1.
*PRINT
TOTAL NODE
STRESS NODE
*END

c

0

10.E6
3
0.1

C ... INCREMENT 1

*END

*STOP

*FPI
TILTED BEAM
*RVNUM
*DATASETS
*GFUNCTION
*METHOD
*ANALTYPE
*PRINT
*END
*ZLEVELS
0.0

*END

QM-

0.0

( BUCKLING ANALYSIS )
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PFEM Input Deck - Closed-Form Model

*PFEM
*MVDEF INE
*COND 1 1 lst eigenvalue
*“DATATYPE 1 modal analysis (buckling)
*RESPTYPE 30 response is the eigenvalue
*COMP 1 1 has no meaning for eigenvalue
*NODE 1 1 has no meaning for eigenvalue
*PERT 4
,2,3,4
*RANVAR 4
1,2,3,4
C *REST 1
*END
*AMVDEFINE
*COND
*COMP
*NODE
*ITER
5 0.0025
*END
*ZFDEFINE
*EXPLICITMODEL 4
1,2,3,4
*ZFUNCT 6 2
1
1.001675
*UZFUNC
*END
c
*RVDEFINE
*DEFINE 1
RO

)
[S RSy

0.2 0.02 NORMAL
c

*DEFINE 2

0.1 0.015 NORMAL
c

*DEFINE 3

LENGTH
10.00 0.5 LOGNORMAL

*DEFINE 4
BLIMIT
3800. 0.1 NORMAL
*PERT
1
*PERT
2

—

1

*PERT
3 notice small perturbation for imperfection

oo N

*PERT
4
*END
*END
c
*FPI

TILTED BEAM
*RVNUM
*DATASETS
*GFUNCTION
*METHOD
*ANALTYPE
*PRINT

*END

0.
0.1
0.
0.

1

O KH WU
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*ZLEVELS 1
0.0
*END
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Appendix C.3
Stress Response of a Circular Disk

1 Stress Response of a Circular Disk

1.1 Introduction

A circular disk is analyzed with two equal and opposite forces P acting along a diameter. Failure
is assumed when the maximum compressive stress ¢ due to the point loads exceeds some
limiting stress 6,. Therefore, the probability of failure is given by,

P,=P[c,s0].
Once P, is computed, the reliability is given as 1-P,.
1.2 Analytical Solution

For point loading acting along the y-axis, the maximum compressive stress is located at the
center of the disk and is given by[1],

where P is the point load, d is the diameter of the disk, and r is the thickness.
1.3 Modeling and Methods

A one-quarter symmetry model is used for the finite element calculations. A representation of
the disk is shown in Figure 1-1 and the finite element mesh is shown in Figure 1-2. Plane stress
conditions are assumed, so NESSUS type 151 elements are used. Symmetry boundary
conditions are imposed along the x=0 and y=0 coordinate lines. The error between the exact and

finite element solution is,

-3.01863

3.0 =1.02721 (+2.7%)

To enable comparison, this factor is used during the probabilistic calculations to adjust the
closed-form solution to match the finite element solution.
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P
Figure 1-1 Circular Disk Problem

Random variables include the point load acting at the center of the disk P, the thickness ¢, and the
limiting stress 0, Table 1-1 lists the input parameters used for these random variables.

Table 1-1. Random Variables Used in the Circular Disk Demonstration Problem

Standard
Variable |Description Mean Deviation Distribution
P Point Load 10z 1b. r 1b. Normal
t Thickness 1.01in. 0.1 in. Normal
Go Limiting Stress -5.0 psi 0.5 psi Normal

The NESSUS input deck for the PFEM analysis is shown in Listing 1-1. The closed-form
solution for the stress is coded in the QRPLAT subroutine, shown in Listing 1-2, as is the

Z-function Z = 6, — 0. This model is selected as model 2 on the * ZFUNCTION keyword card.

Note that to compute the stress using the closed-form expression rather than by finite elements
only requires the * ZFDEF INE input block, shown in Listing 1-1, to be as defined as follows:

*ZFDEFINE
*EXPLICITVARIABLES 3
123

*ZFUNCTION 2 1
1.02721

*UZFUNCTION

*END

Here, the coefficient 1.02721 is the factor between the exact and computed stress.
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In the *ZFDEFINE block shown in Listing 1-1, a *CVARIABLE (computational variable) is
used. In this input block, CVARIABLE number 1 is defined as the resultant of OPERATION 2 on
the response values for NODES 1,2, 3,4, 5,6, and 7. OPERATION 2 is a pre-defined NESSUS
data operation to return the algebraic minimum value, which in this case, corresponds to the
maximum negative stress. The response quantity for the seven nodes is chosen to be the stress,
component 2, at condition (increment) 0, and is selected in the *MVDEF INE block.

The input deck for the Monte Carlo simulation is given in Listing 1-3.
1.4 Results and Discussion

To verify the point probability of failure computation, an entire "cdf” of probability of failure
was computed using Monte Carlo simulation with 100000 samples (Figure 1-3). Figure 1-4
gives a close-up view of the point probability of failure results. Table 1-2 gives the results in
tabular form.

Table 1-2 Results from the Circular Disk Demonstration Problem

Method Probability of Failure
Monte Carlo (N=100000) 0.0041226
FPI (Closed-Form, GFUNC=6) 0.0044202

AMV+ (Closed-Form, GFUNC=1) 0.0037154
AMV+ (NESSUS/FEM, GFUNC=1) ]0.0037215

1.5 References

1. Timoshenko, S.P. and Goodier, J. N., Theory of Elasticity, McGraw Hill, 3rd ed., pg. 122,
1951.
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SOA STRESS MOOEL

QUARTER PLATE IN PLANE STRESS COMPRESSION

Figure 1-2 Finite Element Mesh of the Circular Disk Problem
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Figure 1-3 Probability of Failure Results for the Circular Disk Problem
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CDF (Standard Deviations)
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Figure 1-4 Probability of Failure Results for the Circular Disk Problem
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Listing 1-1 NESSUS/PFEM Input Deck for the Circular Disk Problem

*PFEM
c
C Z-FUNCTION IS DEFINED BY FEM CODE AND 1 EXPLICIT VARIABLE.
C DESIGN FACTOR MODEL 2 IS USED.
C CVARIABLE IS THE MINIMUM FROM NODES 1-7 (DATA DEFINED IN *MVDEFINE)
o]
*2FDEFINE
*COMPUTATIONALMETHOD 1 2
12
*EXPLICITVARIABLES 1
3
*ZFUNCT 2 0
*CVARIABLE 1
NODELIST 7
1234567
OPERATION 2
END
*END
c
C THREE RANDOM VARIABLES
o]
*RVDEFINE
*DEFINE 1
LOAD
-15.70796327 1.570796327 NORMAL
FORCE
37 2 1.0
*DEFINE 2
THICK
1.0 0.1 NORMAL
PROP 151
1 37 1.0 0.0 0.0 6.0 0.0
*DEFINE 3 ’
MAXSTRES
-5.0 0.5 NORMAL
*PERT 1
1 0.1
*PERT 2
2 0.1
*PERT 3
3 0.1
*END
C
C MV ANALYSIS. INCREMENTAL DATA, STRESS RESPONSE, COMPONENT 2 (Y). NODELIST
C IS USED (SEE CVARIABLE IN ZFDEFINE) TO SEARCH FOR MAX STRESS.
o]
*MVDEFINE
*DATATYPE 0
*RESPTYPE 3
*COND 0
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*COMP 2
*PERT 3
123
*RANVAR
123
*END
c

3

C AMV ANALYSIS

c
*AMVDEF INE
*NODE 1

*COMPONENT 2

*ITERAT
10 0.
*END
*END
*FEM

C SOA STRESS MODEL - QUARTER ROUND PLATE IN PLANE STRESS COMPRESSION

C

ION
005

C PARAMETER INPUT

c

*DISPLACEMENTMETHOD

*CONSTITUT
*ELEMENTS
151
*NODES 37
*BOUNDARY
*FORCE 1
*PRINT
*MONITOR 1
*END

Cc

C MODEL DA

c

*ITER 0
20 0.01

IVE 0
27

14

4

TA INPUT

2

*COORDINATES

0.000000E+00
0.134787E+01
0.280959E+01
0.439479E+01
0.611389E+01
0.797821E+01
0.100000E+02
0.000000E+00
0.141905E+01
0.286135E+01
0.432867E+01
0.587043E+01
0.759568E+401
0.964279E+01
0.000000E+00
0.145117E+01
0.284501E+01

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.134787E+01
0.142403E+01
0.147480E+01
0.156613E+01
0.178268E+01
0.213750E+01
0.265840E+01
0.280959E+01
0.285388E+01
0.285993%E+01
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18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

0.412128E+01
0.536625E+01
0.682626E+01
0.863470E+01
0.000000E+00
0.152485E+01
0.289885E+01
0.387187E+01
0.456389E+01
0.563832E+01
0.707107E+01
0.000000E+00
0.173691E+401
0.331194E+01
0.403561E+01
0.504719E+01
0.000000E+00
0.211085E+01
0.265840E+01

0.294152E+01
0.336459E+01
0.406627E+01
0.504719E+01
0.439479E+01
0.430128E+01
0.411028E+01
0.389056E+01
0.457995E+01
0.564813E+01
0.707106E+01
0.611389E+01
0.583001E+01
0.533609E+01
0.680794E+01
0.863470E+C1
0.797821E+01
0.756878E+01
0.964279E+01

37 0.000000E+00 0.100000E+02
*ELEMENTS 151
1 1 2 9 8
2 2 3 10 9
3 3 4 11 10
4 4 5 12 11
5 5 6 13 12
6 6 7 14 13
7 8 9 16 15
8 9 10 17 16
9 10 11 18 17
10 11 12 19 18
11 12 13 20 19
12 13 14 21 20
13 15 16 23 22
14 16 17 24 23
15 17 18 25 24
16 18 19 26 25
17 19 20 27 26
18 20 21 28 27
19 23 30 29 22
20 24 31 30 23
21 25 26 31 24
22 26 27 32 31
23 27 28 33 32
24 30 35 34 29
25 31 32 35 30
26 32 33 36 35
27 35 36 37 34
*PROP 151
1 37 1. 30.0E+6 0.3
*BOUNDARY
1 1 0.0
1 2 0.0
2 2 0.0
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3 2 0.0
4 2 0.0
5 2 0.0
6 2 0.0
7 2 0.0
8 1 0.0
15 1 0.0
22 1 0.0
29 1 0.0
34 1 0.0
37 1 0.0
*FORCE
37 2 =15.70796327
*PRINT
TOTAL NODE
STRESS NODE
*MONITOR
STRESS NODE 1 COMPONENT 1
STRESS NODE 2 COMPONENT 1
STRESS NODE 3 COMPONENT 1
STRESS NODE 4 COMPONENT 1
STRESS NODE 5 COMPONENT 1
STRESS NODE 6 COMPONENT 1
STRESS NODE 7 COMPONENT 1
STRESS NODE 1 COMPONENT 2
STRESS NODE 8 COMPONENT 2
STRESS NODE 15 COMPONENT 2
STRESS NODE 22 COMPONENT 2
STRESS NODE 29 COMPONENT 2
STRESS NODE 34 COMPONENT 2
STRESS NODE 37 COMPONENT 2
*END
ot
o
c
*FPI

SOA STRESS MODEL - QUARTER ROUND PLATE IN PLANE STRESS COMPRESSION
*RVNUM 3
*DATASETS 4
*GFUNCTION 1
*METHOD 1
*ANALTYPE 1
*PRINT 0
*END
*ZLEVELS 1
0.0
*END
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Listing 1-2 QRPLAT Subroutine

SUBROUTINE QRPLAT (NFMVR,FEMRES, PLOAD, THICK, SYLIM,CFACT, RADIUS,
+ VALDV)
IMPLICIT DOUBLE PRECISION(A-H,0-2)

STRESS RESPONSE OF A ROUND PLATE SUBJECTED TO 2 OPPOSING POINT LOADS

NFMVR - NUMBER OF FEM RESPONSE VARIABLES
FEMRES FEM RESPONSE VALUE

PLOAD - APPLIED LOAD

THICK - THICKNESS

SYLIM - LIMITING Y STRESS

CFACT - FEM/EXACT CORRECTION FACTOR
RADIUS - RADIUS OF PLATE

VALDV -~ RETURNED Z-VALUE

IF NFMVR>0, THE STRESS WAS COMPUTED BY NESSUS/FEM SO USE FEMRES.
OTHERWISE, COMPUTE STRESS USING CLOSED FORM EQUATION. NOTE THAT IF
THE STRESS CAME FROM NESSUS/FEM, THE APPLIED LOAD WAS HALVED SINCE
A SYMMETRY MODEL WAS USED; THEREFORE WE-MULTIPLY IT BY TWO HERE,

o 6 6 8 5 5 8 8 S8 806 E 60 06080 E TSN 0EEENSSSEEE PP ESLOEIRNIIEIIOPICOCEIEITIIOECEIIBNDPIPOESTCTOED

Pi(t) (R)

OO0 O0000000000000

IF (NEMVR.GT.0) THEN
SIGYY = FEMRES

ELSE

PI = ACOS(~1.0D0)

TWO = 2.0D0

PLOAD = PLOAD*TWO

SIGYY = 3.0DO*PLOAD/ (PI*THICK*RADIUS)
ENDIF

C
C LIKE DESIGN FACTOR MODEL #2: 2 = § - R (RESISTANCE IS ALGEBRAICALLY
C LESS THAN STRESS, SO SWITCH FROM NORMAL CONVENTION)

c

VALDV = SIGYY*CFACT - SYLIM
ol

RETURN

END
c

266



Listing 1-3 Input Deck for the Monte Carlo Simulation

*FPI
SOA STRESS MODEL - QUARTER ROUND PLATE IN PLANE STRESS COMPRESSION (9/21/90)
*RVNUM 3

*GFUNCTION 6
*METHOD 5

*ANALTYPE 1

*PRINT 0

*END

*ZLEVELS 1

0.0

*MONTE

100000, 1234., 0.9

*EXACTPRM

21, 2, 0

10.0

1.02721

*DEFRANV
LOAD

-0.157080E+02 0.157080E+01 0.200000E+01
THICK

0.100000E+01 0.100000E+00 0.200000E+01
MAXSTRES

=0.500000E+01 0.500000E+00 0.200000E+01
*END
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Appendix C.4
Fatigue Life of a Three-Point Bend Specimen

1 Fatigue Life of a Three-Point Bend Specimen

1.1 Introduction

The reliability of a three-point bend specimen against failure by fracture is computed. Failure is
defined as

P,=P[N,SN,] ’

where N, is the computed number of cycles to failure and N, is the design life. N, is based on the
number of cycles to advance a crack to a critical length.

1.2 Analytical Solution

The Paris relation,

da n
aTV'=C(AK)

is used to describe the crack growth. The crack is grown from an assumed intrinsic flaw size g;
to a critical length a, at which point failure is assumed to occur, a,=a..

Assuming that the stress intensity geometry factor is constant and that the stress range is
{0 < 6 < 0,,,,}, the Paris relation can be integrated from g; to a, to yield,

_ z[a}l -nn)_ai(l-uﬂ)]

T CR=n) (¥ CpuNT)"

N, , forn#2

where for the three-point bend specimen,

3PS
eI
P, S, and B are defined in Figure 1-1.
1.3 Modeling and Methods

The material is 2024-T3 aluminum. The dimensions of the beam have been chosen such that the
stress intensity geometry factor is essentially constant.

A representation of the three-point specimen is shown in Figure 1-1. Using symmetry, only

one-half of the beam is modeled. Pinned boundary conditions are imposed at either end of the
beam and loading consists of a single point load acting downward at the center of the beam. A
2x2 mesh, shown in Figure 1-2, of plane stress (type 151) elements is used to model the beam.
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s S -
Figure 1-1 Three-Point Bend Specimen

The problem is solved three ways: (i) using the NESSUS AMV+ algorithm with o, obtained

from a simple finite element model of the three-point bend specimen, (i) using the NESSUS
AMYV+ algorithm with o, obtained using the closed-form solution, and (iii) using Monte Carlo

with G, obtained using the closed-form solution.

Random variables include the point load acting at the center of the beam P, the length of the
beam S, the height of the beam B, the initial crack length a;, the final crack length g, the Paris

coefficient C, the stress intensity geometry factor Y, and the design life NV,. The Paris exponent n
is assumed deterministic, and Y is assumed constant for all crack lengths between g; and a,.
Table 1-1 lists the input parameters used for these random variables.
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Table 1-1. Random Variables Used in the Three-Point Bend Fatigue

Life Demonstration Problem
Standard
Variable |Description Mean Deviation Distribution
P Point Load 6.6667 kips  |0.6667 kips |Lognormal
S Beam Length 8.0 in. 0.8 in. Normal
B Beam Width 2.0in. 0.2in. Normal
a; Final Crack Length|0.09 in. 0.009 in. Normal
a; Initial Crack 0.01 in. 0.002 in. Normal
Length
C Paris Exponent 1.16 E-09 1.16 E-10 Normal
Y Stress Intensity 1.0 0.1 Normal
Geometry Factor
n Paris Exponent 4 0 -
N, Design Life 20,000 cycles |20 cycles Normal

The NESSUS input deck for the PFEM analysis is shown in Listing 1-1. The calculation of N, is

coded in the PARI SNF subroutine, shown in Listing 1-2, and selected as model 3 on the
*ZFUNCTION keyword card. The Paris exponent is passed into PARISNF as a user coefficient,
also on the *ZFUNCTION card. Note that to compute the stress using the closed-form
expression rather than by finite elements only requires the * ZFDEF INE input block to be as
defined as follows:

*ZFDEFINE
*EXPLICITVARIABLES 8
12345678
*ZFUNCTION 3 1

4.0

*UZFUNCTION

*END

The input deck for the Monte Carlo simulation is given in Listing 1-3.
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1.4 Results and Discussion

To verify the point probability of failure computation, an entire "cdf” of probability of failure
was computed using both the NESSUS/PFEM AMV+ procedure and Monte Carlo simulation
with 100,000 samples (Figure 1-2). Figures 1-2 and 1-3 give close-up views of the point
probability of failure results. Table 1-2 gives the results in tabular form.

Table 1-2 Results from the Three Point Bend Specimen Demonstration Problem

Method Probability of Failure
AMV+ (NESSUS/FEM) 0.205119
AMYV+ (Closed Form) 0.209152
Monte Carlo (N=100000) 0.196020

1.5 References

1. Broke, D., "Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers,

The Hague, 1984.
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Listing 1-1 NESSUS/PFEM Input Deck for the Three-Point Bend Demonstration

*PFEM
PARIS FATIGUE CRACK PROPAGATION DEMONSTRATION (BHT 9/90)

The problem is to compute the probability that NF is less than
NO where NF is the number of cycles to failure and NO is the
design life.

The material is 2024-T3 Aluminum. A Paris Law is used to describe
the crack growth with an assumed detectable flaw size.

Random variables include:

1 PMAX point load acting at the center of the beam
2 S length of the beam

3 B height of the beam

4 AF final crack length

5 A0 initial crack length

6 c Paris coefficient

7 Y stress intensity geometry factor

8 NO design life

The Paris exponent N is considered deterministic and the gecmetry
factor is assumed constant for all crack lengths between AO and AF.

The problem is solved several ways:

(1) PFEM using FEM

{2) PFEM using closed form equations

(3) FPI using closed form equations

(4) Monte Carlo using closed form equations

The short subroutine PARISNF is used to compute the number of cycles
to failure (Nf) from the input variables. This subroutine is called
from both the UZFUNC (PFEM) and RESPON (FPI) routines.

Z-FUNCTION DEFINITION

THE "PARISNF" ROUTINE IS CODED AS USER RESISTANCE MODEL #3
8 RANDOM VARIABLES (3-COMPUTATIONAL,S-EXPLICIT)
1 USER COEFFICIENT (PARIS EXPONENT,N)

QOO0 0O0O000000000000000000000000000000000000O0

*ZFDEFINE
*COMPUTATIONALMETHOD 1 3
123
*EXPLICITVARIABLES S
45678
*ZFUNCTION 3 1
4.0
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*UZFUNCTION

*END

c

C RANDOM VARIABLES

C

C ONE-HALF SYMMETRY IS USED FOR THE FEM MODEL; THEREFORE, THE LOADING
C AND BEAM LENGTH IS HALF OF THE ACTUAL VALUE.

c
*RVDEFINE
*DEFINE 1
PMAX
3.333333 0.333333 LOGNORMAL
FORCES
9 2 1.0
*DEFINE 2
S
4.0 0.4 NORMAL
COORDINATES
1 0.0 0.0
2 0.5 0.0
3 1.0 0.0
4 0.0 0.0
L] 0.5 0.0
6 1.0 0.0
7 0.0 0.0
8 0.5 0.0
9 1.0 0.0
*DEFINE 3
B
2.0 0.2 NORMAL
COORDINATES
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.5
S 0.0 0.5
6 0.0 0.5
7 0.0 1.0
8 0.0 1.0
9 0.0 1.0
*DEFINE 4
AF
0.09 0.009 NORMAL
*DEFINE S
AO
0.01 0.002 NORMAL
*DEFINE 6
C
1.16E-9 1.16E-10 NORMAL
*DEFINE 7
Y
1.0 0.1 NORMAL
*DEFINE 8
NO
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20000.0 20.0 NORMAL

*PERT 1

1 0.1
*PERT 2

2 0.1
*PERT 3

3 0.1
*PERT 4

4 0.1
*PERT 5

5 0.1
*PERT 6

6 0.1
*PERT 7

7 0.1
*PERT 8

8 0.1
*END
c
o
C MEAN VALUE PROBABILISTIC ANALYSIS
c
*MVDEF INE
*PERT 8
12345678
*RANVAR 8

12345678
*DATATYPE 0
*RESPTYPE 3
*CONDITION 0
*NODE 3
*COMPONENT 1
*END
Cc
Cc
C ADVANCED MEAN VALUE PROBABILISTIC ANALYSIS
o

*AMVDEF INE
*ITERATION

10 0.0025
*CONDITION 0
*NODE 3
*COMPONENT 1
*END
c
C END PFEM INPUT
c

*END
C

*FEM
C PARIS FATIGUE CRACK PROPAGATION DEMONSTRATION (BHT $/90)
*CONS 0
*ELEMENTS 4

151
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*NODES 9
*BOUNDARY 4
*FORCES 1
*PRINT

*END

*ITER 0 3

20 0.01
*COORDINATES

.
.

»
OO0 O0OO0DO0ODO0DO0OO0OO

»

H YU OoaWwkrHDeEWNDE M
é HWOWwodoan U o WN K
[

:

e NOoOLsENOAENO
W W « & » -
NOOOCOOOOO0O

OO+~ - OO0
. e

[
= .

[T 3 S
AN
[-- B ¥ N

0.0
0.0
0.
0
E
1

2
1
1
1
O

*

ROP
9
*FORCES
9 2 3.333333
*PRINT
TOTAL NODE
STRESS NODE
*END
o
C FPI ANALYSIS CONTROL CARDS
c
*FPI
C PARIS FATIGUE CRACK PROPAGATION DEMONSTRATION (BHT 9/90)
*RVNUM 8
*GFUNCTION 1
*DATASETNM 9
*METHOD 1
*PRINTOPT 0
*ANALTYPE 1
*END
*ZLEVELS 1
0.0
*END

Y

0
RTY
.0

30.0E3 0.3 1.0 1.0
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Listing 1-2 PARISNF Subroutine

SUBROUTINE PARISNF (NFMVR,FEMRES, PMAX, S, B, AF,A0,C, Y,RNO,N, ZVALUE)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

FATIGUE CRACK PROPAGATION MODEL (PARIS LAW)

NFMVR IS THE NUMBER OF FEM RESPONSE VARIABLES. IF >0, GET STRESS FROM
FEMRES. IF NFMVR=(0, STRESS IS COMPUTED USING CLOSE FORM EXPRESSION.
NOTE THAT IN THIS CASE, THE LOAD (PMAX) AND BEAM LENGTH (S) ARE
MULTIPLIED BY 2 SINCE HALF THE VALUES ARE USED IN THE INPUT DECK

FOR THE SYMMETRY FEM MODEL.

IF (NFMVR.GT.0) THEN
SIGMAMAX = FEMRES

ELSE
TWOS = §*2,0D0
TWOP = PMAX*2,0D0
SIGMAMAX = 3.0DO*TWOP*TWOS/ (2.0DQ*B**2)

ENDIF

PI = ACOS(-1.0D0)

COMPUTE THE NUMBER OF CYCLES TO FAILURE.

RNF = 2% (AF** (N/2) *AO - AF*AO**(N/2))/

+ (AF** (N/2) *AO** (N/2) *C* (=2 + N) *PI** (N/2) *SIGMAMAX* *N*Y**N)
FORMULATE THE Z-FUNCTION. NOTE THIS IS SIMILAR TO S-R SO THE FUNCTION
WILL BE <= 0 WHEN FAILURE.

ZVALUE = RNF - RNO
RETURN
END
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Listing 1-3 Input Deck for the Monte Carlo Simulation

*FPI
C PARIS FATIGUE CYCLES TO FAILURE DEMONSTRATION
*RVNUM 8
*GFUNCTION 6
*METHOD 6
*PRINTOPT 0
*ANALTYPE 1
*END
*EXACTPRM
1810
4.0
*MONTE
100000, 1234.0, 1.0
*ZLEVELS 1
0.0
*DEFRANVR
PMAX
3.33333 0.333333 4.0
s
4.0 0.4 2.0
B
2.0 0.2 2.0
AF
0.09 0.009 2.0
AO
0.01 0.002 2.0
ol
0.116000E-08 0.116000E-09 2.0
Y
1.0 0.1 2.0
NO
20000.0 20.0 2.0
*END
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Appendix C.5
Elastoplastic Low Cycle Fatigue Life of a Rectangular Plate

1 Elastoplastic Low Cycle Fatigue Life of a Rectangular Plate

1.1 Introduction

The probabilistic life of a simple rectangular plate is analyzed considering damage caused
by low cycle fatigue. In addition, a material strength degradation model is used in the analysis
that considers the effect of thermal fatigue cycles and temperature on the initial yield stress.

During damage due to low cycle fatigue, significant amounts of plastic strain are induced
each cycle. In this regime of plastic behavior, the fatigue life is much more accurately described
as a function of the cyclic strain amplitude as opposed to the cyclic stress amplitude in the case
of high cycle fatigue. Nevertheless, the effects of mean stress can be important, especially in the
transition region between high and low cycle fatigue. For this demonstration, the number of
cycles to failure is computed from,

N,=A10 ~(ae)®

where N, is the computed number of cycles to failure, A and b are material parameters, o, is the

mean stress measure, and At is the cyclic strain range measure. Here, these measures are
computed as,

where G is the y component of the stress and &” is the plastic strain.

1.2 Description of the Problem

Figure 1-1 illustrates the analysis performed. The rectangular plate is subjected to fully
reversed strain cycling under uniaxial stress conditions. A bilinear stress-strain relationship is
used to simplify the calculations for the demonstration. As shown in Figure 1-1, the imposed
displacement cycles the plate through one and one-quarter cycles.

The deterministic elastoplastic calculations were checked by computing the stress and
strain at six points, illustrated in Figure 1-5. Going point by point, the following relationships
are easily seen,
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0, =0, &=
§=¢€,, 0,=0,+E'(g,-¢,)
0,=-0, e,=e,+(c’;62)
€= g,=0,+E'(e,-¢&)
0;=—0, e,=e‘+(o’;c‘)
€ = Epy O =05+ E'(es—¢&;)

where E is the elastic modulus, £’ is the hardening slope taken from a uniaxial tension
stress-strain curve, O, is the initial yield stress, €y, is the minimum total strain, and &, is the
maximum total strain. Because the displacement history is specified, the maximum and
minimum stress occurs at points 6 and 4, respectively, and the maximum and minimum plastic
strain occurs at points 2 and 4, respectively. Substituting the relations given above, the mean
stress and plastic strain range are,

5 = (Cs+0,) =E'(2E'-E)(ZEE'em-15"?.,,,_,+E’e,,,.,+21:‘(:, -2E’c,)
m 2 2E3

_ 2Eq,,
TE'(E-2EY’

’

A

1.3 Modeling and Methods

A finite element model of the rectangular plate was constructed using two square plane
stress linear elements. The boundary conditions and loading on the plate are shown in Figure
1-1. The applied displacement history is shown in Figure 1-2.

Nonlinear material behavior is allowed using the bilinear stress-strain relation shown in
Figure 1-3. The classical von Mises J2-flow plasticity model is used with isotropic hardening.
For the finite element calculation of mean stress and plastic strain range, the inelastic portion of
the stress-strain relationship is described in terms of the effective plastic strain (as opposed to the
effective strain). In the case of linear hardening, a single parameter H (the hardening slope) is
input, computed by,

EE’

H="p
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The material damage model used in this demonstration is the multi-factor interaction
(MFT) relation of Boyce [1]. Although, in general, a more realistic damage model may be
warranted, the MFI model provides a simple mechanism for treating any possible material
strength damage indicator, such as crack length, fatigue strength, or stiffness. The MFI relation
models material degradation using a series product equation fitted to experimental or assumed
data. A single term is used to describe each primitive variable (stress, temperature, cycles, etc. ).
The general form of the MFI relation is,

M, _ i Ag-A )"
M, — il Ar-A,

where Ag, A;, and A, are the ultimate, current, and reference values of the i* primitive variable,
a; is the value of an empirical constant for the i* primitive variable, 7 is the number of primitive
variables considered, and M, and M, are the current and reference values of the material

property. The effect of each primitive variable on the current material property varies from 1.0
(no effect on strength) to 0.0 (complete loss of strength) times the reference value of the material

property.

Degradation of the initial yield stress is modeled as a function of temperature and thermal
fatigue primitive variables. Consistent with the linear hardening assumption, the current value of
the yield stress is computed by,

o, =0, +HE,
: Npg =Ny Y( Te-T Y
G =¢° F ~ V1 F .
’ > \Nrr—=Nro Tr-T,
where o‘, is the damaged initial yield stress, H is the hardening slope, & is the equivalent plastic
strain, and o, is the yield strength of the undamaged material. Nyz, Ny, and Ny, are the final,

current, and initial number of thermal fatigue cycles, and T, T, and T, are the final, current, and
initial temperatures.

The deterministic finite element calculations were checked against the analytical solution,
and are shown in Table 1-1. Since a relatively loose convergence tolerance (1%) was used, the
agreement shown in Table 1-1 is acceptable. The y-component stress-strain response at node 5 is
plotted in Figure 1-4.
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Table 1-1. Comparison of Analytical and Finite Element Solutions. €, is the y-component of the
total strain (applied), o, is the y-component of the Stress and &' is the y-component of the Plastic

Strain.
Analytical NESSUS/FEM
g o, & o, &
Point
1 0.003471 0.243 0.0
2 0.015 0.2968 0.011529 0.2975 0.01075
3 0.00641 -0.2968 0.011529
4 -0.015 -0.39723 -0.009991 -0.3977 -0.009322
5 -0.003352 0.39723 -0.009991
6 0.015 0.48426 0.008659

Seven random variables, listed in Table 1-2, were considered in the analysis. The values
for the terms in the MFI relation were calculated from a regression analysis of cast nickel-based
superalloy data, computed and tabulated in [2]. The values for the remaining primitive random
variables were arbitrarily chosen as:

Nz =1000 cycles; Np =10 cycles;
=2732° F, T,=68° F;
b=-4.
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Table 1-2. Random Variables Used in the Low Cycle Fatigue Demonstration Problem

Standard Coefficient of
Variable |[Description Mean Deviation Variation Distribution
a° Material Yield 0.5165 0.02583 5% Normal
> |Strength

N; Number of 501 50.1 10% Lognormal
Thermal Fatigue
Cycles

q Thermal Fatigue |0.5 0.015 3% Normal
Damage Exponent

T Temperature 1562 46.7 3% Normal
Thermal Damage |0.5 0.015 3% Normal
Exponent

H Hardening Slope |5.0 0.25 5% Normal

A LCF Material 6.304(10)*  |3.152(10)* 5% Normal
Parameter

NESSUS Finite Element Analysis

The input deck for the NESSUS/PFEM analysis is shown in Listing 1-1. The calculation
of N, is coded in the UZFUNC subroutine, shown in Listing 1-2, and selected as model 11 on the

*ZFUNCTION keyword card. The material exponent, b, which is considered deterministic, is
passed into UZFUNC as a user coefficient, also on the *ZFUNCTION card.

Four computational variables (CVARIABLE) are defined: (1) the maximum plastic strain,
(2) the minimum plastic strain, (3) the maximum stress, and (4) the minimum stress. These four
variables are passed into the UZFUNC user-routine (for the deterministic and each perturbed
solution) where the mean stress and strain range are computed and used in the calculation of N,.

The seven random variables considered in the analysis are defined next in the
*RVDEFINE section. Random variables 1-6 (o‘;, N1, q, T, u, and H) are defined as COEF

(coefficient) random variables. The COEF random variables are perturbed and tracked during
the course of the finite element calculations in the same fashion as other FEM random variables.
In this demonstration, the COEF variables are used to define the yield stress damage model in
the UWKSL user-routine, given in Listing 1-3. The seventh random variable, the material
parameter A, is an explicit random variable; therefore, the type and data block are not input.
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Figure 1-5 diagrams the effect of a perturbation of the initial yield stress which results
from a perturbation of any of the primitive random variables o), Np, ¢, T, or u. Figure 1-6 shows

the effect of a perturbation of primitive random variable H.

The Mean-Value and Advanced Mean Value Iteration analysis options are specified in the
MVDEFINE and AMVDEFINE sections, respectively. To summarize, all seven random
variables and perturbations are selected, and the Advanced Mean Value iteration procedure is set
to continue until convergence is within 5% of the computed life or a maximum of 5 iterations is
reached.

To verify the demonstration, the analytical solution for the analysis was programmed in the
RESPON routine and a Monte Carlo simulation performed. The Monte Carlo input is given in
Listing 1-4, and the RESPON subroutine given in Listing 1-5.

1.4 Results and Discussion

The cumulative distribution function (CDF) for the number of cycles to failure is given in
Figure 1-8. As shown, the agreement between the NESSUS AMV+ procedure and the Monte
Carlo simulation is quite good. Note that with the NESSUS AMV+ procedure, 52 response
function evaluations (NESSUS/FEM re-solutions, including perturbed solutions) were required
as opposed to 100,000 evaluations using Monte Carlo.

The probabilistic sensitivity factors for each primitive random variable is plotted in Figure
1-9 as a function of probability (CDF value). As shown, Ny declines in importance and 0“;
increases in importance of as one moves from lower probability to higher probability.

1.5 References

[1] Boyce, L. and Chamis, C.C., "Probabilistic Constitutive Relationships for Cyclic Material
Strength Models, "Proc. 29* Structures, Structural Dynamics and Materials Conf.,"
Williamsburg, VA, April, 1988.

[2] Boyce, L. and Chamis, C.C., "Probabilistic Constitutive Relationships for Material
Strength Degradation Models, "Proc. 30* Structures, Structural Dynamics and Materials
Conf.,” Mobile, AL, April, 1989.
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Figure 1-1 Elastoplastic Rectangular Plate Analysis
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Listing 1-1 NESSUS/PFEM Input Deck

*PFEM

o
o

... LOW CYCLE/MFI FATIGUE

*ZFDEFINE
*COMPUTATIONALMETHOD 1 6

Cc

123456

*EXPLICITVARIABLES 1
7

*ZFUNCTION 11 1
4.0

*UZFUNCTION

C CVARIABLE 1 ... ALGEBRAIC

C

c

*CVARIABLE 1
RESPTYPE 11
COMPONENTLIST 1

1
NODELIST 1

5
CONDITIONLIST 50

0 1 2 3 4 5 6 1
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
OPERATION 1
END

C CVARIABLE 2 ... ALGEBRAIC

Cc

C

*CVARIABLE 2

RESPTYPE 11
COMPONENTLIST 1

1

NODELIST 1

5

CONDITIONLIST 50
0 1 2 3 4 5 6 7
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
OPERATION 2

END

C CVARIABLE 3 ... ALGEBRAIC

C

*CVARIABLE 3
RESPTYPE 3
COMPONENTLIST 1
1
NODELIST 1
5
CONDITIONLIST 50
0 1 2 3 4 5 6 7
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
OPERATION 1
END

DEMONSTRATION (MFI YIELD STRESS DEGRADATION)

MAXIMUM PLASTIC STRAIN AT NODE 5

8 9
18 19
28 29
38 39
48 49

MININUM PLASTIC STRAIN AT NODE 5

8§ 9
18 19
28 29
38 39
48 49

MAXIMUM AXIAL STRESS AT NODE 5

8 9
18 19
28 29
38 39
48 49
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o
C CVARIABLE 4 ... ALGEBRAIC MINIMUM AXIAL STRESS AT NODE 5
c
*CVARIABLE 4
RESPTYPE 3
COMPONENTLIST 1
1
NODELIST 1
5
CONDITIONLIST 50
0 1 2 3 4 S 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
OPERATION 2

END
*END
c
C ..... RANDOM VARIABLES
o
*RVDEF INE
*DEF INE 1
SIGYO

0.516473 0.025824 NORMAL
COEF

1 1.0000

2 0.0000

3 0.0000

4 0.0000

5 0.0000
: 6 0.0000
*DEF INE 2
TEMP

1562.0 46.7 NORMAL

COEF

1 0.0000

2 1.0000

3 0.0000

4 0.0000

5 0.0000

6 0.0000
*DEF INE 3
TMP_EXP

0.5 0.0015 NORMAL
COEF

1 0.0000

2 0.0000

3 1.0000

4 0.0000

5 0.0000

6 0.0000
*DEF INE 4
CYCLES

501.0 50.1 LOGNORMAL
COEF

1 0.0000

2 0.0000

3 0.0000

4 1.0000

5 0.0000

6 0.0000

*DEFINE 5
CYC_EXP
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0.5 0.05 NORMAL

COEF
1 0.0000
2 0.0000
3 0.0000
4 0.0000
5 1.0000
6 0.0000
*DEFINE 6
HSLOPE
5.0 0.25 NORMAL
COEF
1 0.0000
2 0.0000
3 0.0000
4 0.0000
5 0.0000
6 1.0000
*DEFINE 7
A
6.30351E-3 3.15176E-4 NORMAL
c
C ..... PERTURBATIONS
c
*PERT 1
1 0.1000
*PERT 2
2 0.1000
*PERT 3
3 0.1000
*PERT 4
4 0.1000
*PERT 5
5 0.1000
*PERT 6
6 0.1000
*PERT 7
7 0.1000
*END
c
cC ..... MEAN VALUE PROBABILISTIC ANALYSIS
c
*MVDEF INE

*PERTURBATIONS 7

12345¢67

*RANVAR 7

1234567
*END

Cc ..... ADVANCED MEAN VALUE PROBABILISTIC ANALYSIS

*AMVDEFINE

*NODE 1

*COMPONENT 1

*CONDITION 1

*ITERATION

5 0.05

*END
*END
C
*FEM
C ... LOW CYCLE/MFI FATIGUE DEMONSTRATION (MFI YIELD STRESS DEGRADATION)
o]
C TWO ELEMENT TEST OF THE VON MISES PLASTICITY MODEL WITH ISOTROPIC
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C HARDENING. A BI-LINEAR PLASTIC STRAIN CURVE IS USED AND IS DEFINED IN
C THE USER SUBROUTINE "UWKSL". THE YIELD STRESS (SIGY) IS DEFINED USING
C THE MULTI-FACTOR INTERACTION (MFI) RELATION (BOYCE, 1988). THE MFI

C MODEL IS USED TO DESCRIBE THE INITIAL YIELD STRESS AS A FUNCTION OF

C RANDOM (COEF) PRIMITIVE VARIABLES.

Q

C 23-NOV-90

*TANGENT 1
*CONSTITUTIVE 2
*NODES 6
*ELEMENTS 2

3

*BOUNDARY 5
*HARDENING 2

*UWKSL
*COEF 6
*PRINT
*MONITOR 4
*END
(o]
C ... MODEL DATA AND LOAD INCREMENT 0
c
*ITERATIONS 0
0.0100
*ITERATIONS 1 6
20 0.0000 0.0001
*ELEMENTS 3
1 1 3 4 2
2 3 5 6 4
*COORDINATES
0.0000 0.0000

1

2 0.0000 10.0000
3 10.0000 0.0000
4 10.0000 10.0000
5 20.0000 0.0000
6 20.0000 10.0000

*BOUNDARY
1 1 0.0000
1 2 0.0000
2 1 0.0000
5 1 0.0300
6 1 0.0300
*PROPERTY 3
1 6 1.0000 70.0000 0.2000
*PRINT
TOTA NODE
STRE NODE
STRA NODE
PLAS NODE
*COEF
1 0.516473
2 1562.0
3 0.5
4 501.0
S 0.5
6 5.0
*MONITOR

TOTA NODE 5 COMP 1
STRE NODE 5 COMP 1

295



STRA NODE 5 COMP 1
PLAS NODE 5 COMP 1

*END
o
C ... CONTINUE LOADING FOR NINE MORE INCREMENTS
c
*AUTO
9
*END
c
C ... UNLOAD FOR THE NEXT TWENTY INCREMENTS
o
*BOUN
1 1 0.0000
1 2 0.0000
2 1 0.0000
5 1 -0.0300
6 1 -0.0300
*AUTO
20
*END
c
C ... RELOAD FOR THE LAST TWENTY INCREMENTS
c
*BOUN
1 1 0.0000
1l 2 0.0000
2 1 0.0000
S 1 0.0300
6 1 0.0300
*AUTO
20
*END
*EXIT
c
C ..... FPI INPUT DATA
C
*FPI
C ... LOW CYCLE/MFI FATIGUE DEMONSTRATION (MFI YIELD STRESS DEGRADATION)
*RVNUM 7

*DATASETS 8
*GFUNCTION 1
*METHOD 1
*ANALYTYPE 0
*PRINT 0
*END

*END

296



Listing 1-2 NESSUS/FEM UWKSL User Routine used to Define the Work Hardening Curve as

aoa

OO0 OO0 aOOaQO0000000000000000000000000000000000000000

a Function of the Equivalent Plastic Strain and the MFI Model

SUBROUTINE UWKSL ... USER~-DEFINED WORKHARDENING SLOPE

SUBROUTINE UWKSL
1 (EPLAS ,SIGY ,HSLOP ,SHIFT ,TEMP ,NODE )

2R 22 2222232222323 2223 232 222322 2222 22t i s 22ttt s

** xn
** DEFINES THE WORKHARDENING SLOPE FOR J2-FLOW PLASTICITY **
* kK

Y2 22 2323 2222222222282 2222223 2233222232 2222222222 R 2R RaRRa s Rttt st d

ARGUMENTS :

EPLAS INPUT THE EQUIVALENT PLASTIC STRAIN VALUE
SIGY OUTPUT THE YIELD STRESS AT THIS PLASTIC STRAIN
HSLOP OUTPUT THE SLOPE OF THE WORKHARDENING CURVE
SHIFT QUTPUT THE SHIFT TENSOR (BACKSTRESS) VALUE

TEMP INPUT THE TEMPERATURE AT THE NODE
NODE INPUT THE NODE NUMBER
NOTES:

* THIS SUBROUTINE IS CALLED BY:
YIEL TO CHECK WETHER PLASTIC YIELDING OCCURS

* THE VALUE OF THE EQUIVALENT PLASTIC STRAIN IS A GIVEN QUANTITY.
IT WILL BE USED TO INTERPOLATE THE TABLES CODED BY THE USER IN
THIS SUBROUTINE OR AS AN INPUT FOR A FUNCTIONAL EXPRESSION.

* THE YIELD STRESS AT THIS PLASTIC STRAIN IS USED TO DETERMINE THE
RADIUS OF THE VON MISES YIELD SURFACE.

* THE SLOPE OF THE WORKHARDENING CURVE IS GIVEN BY

d Sigma

HSLOP = —======
pl
d Eps
pl
WHERE d Sigma IS THE STRESS INCREMENT, AND d Eps IS THE
CORRESPONDING PLASTIC STRAIN INCREMENT,

* THE SHIFT TENSOR (BACKSTRESS) VALUE IS THE AMOUNT SUBTRACTED
FROM THE EQUIVALENT STRESS BEFORE COMPUTING THE GEOMETRY OF
THE YIELD SURFACE; 1IN OTHER WORDS, IT IS THE AMOUNT BY WHICH
THE YIELD SURFACE IS SHIFTED FROM THE ORIGIN DURING KINEMATIC
OR COMBINED HARDENING; IT IS ZERO FOR ISOTROPIC HARDENING.

* THE TABLES AND/OR FUNCTIONS CODED IN THIS USER SUBROUTINE MAY
DEPEND ON BOTH SPATIAL LOCATION (NODE) AND THE TEMPERATURE.

IR XSS SR L2222 2222238322222 2 222222222222ttt R Rl dd

IMPLICIT REAL*8 (A-H,0-2)

KRR KA AR R AR E AR R RA AR AN AR TR AR ANARARNRRARAAERRRAARKRRAARRA AR KK

** BLOCK USRCOF: USER-DEFINED COEFFICIENTS FROM "*COEF" OPTION **
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o] AR ERRAR KRN R KR AR R RN AR R AR A AR R TR A AR AR AR RN RN RRRARRAR AR RNk
c :
c IUNIT <=> UNIT NUMBER OF MAIN OUTPUT FILE (FOR ANY USER-DEFINED
c OUTPUT THAT MAY BE GENERATED)
c JPERT <=> CURRENT PERTURBATION NUMBER
c (0 .LE. JPERT .LE. NUMBER OF PERTURBATIONS)
Cc NCOEF <=> NUMBER OF USER-DEFINED COEFFICIENTS (UP TO 10 ALLOWED)
c VCOEF <=> VALUES OF THE USER-DEFINED COEFFICIENTS FOR
c PERTURBATION # JPERT
o
COMMON / USRCOF / IUNIT ,JPERT ,NCOEF ,VCOEF (10)
Cc
Covinnnennnne O L R I I tecsessatrsesstrrenatnne
c
c
C MULTI-FACTOR INTERACTION RELATION USED TO DEFINE THE YIELD STRESS AS
C A RANDOM FUNCTION OF TEMPERATURE AND THERMAL FATIGUE CYCLES.
o
SIGY0 = VCOEF(1l)
TT = VCOEF (2)
QQQ = VCOEF (3)
RNT = VCOEF (4)
810)¢) = VCOEF (5)
HSLOPE = VCOEF (6)
c
HSLOP = HSLOPE
SHIFT = 0.0D0O
TTF = 2732.0D0
TT0 = 68.0D0
RNTF = 1000.0D0
RNTO = 10.0DO
c
SIGYI = SIGYOQ~*
+ (( TTF - TT )/( TTF = TTO ))**QQQ*
+ ({ RNTF - RNT )/( RNTF - RNTO ))**UyU
SIGY = EPLAS*HSLOP + SIGYI
c WRITE (IUNIT,1) (VCOEF(I),I=l,5),SIGYI,EPLAS,SIGY
C 1 FORMAT(’ <=UWKSL=> COEFS 1-5 = ’,5(2X,El1ll1l.4),
c + ‘ SIGYI~’, El1.4,’ EPLAS=’,Ell.4,’ SIGY=',Ell.4)
c
RETURN
END
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Listing 1-3 Section of Code from the UZFUNC User Routine used to Compute the Cycles to
Failure from the NESSUS/FEM Analysis

[olR 22222222 a2 22222 2 X222 22222 a2 22 2 2 R 2 R R R PR Y

C * MODEL 11: LCF/MFI DEMONSTRATION--2 ELEMENT ELASTIC PLATE TENSION

Cc * TEST WITH YIELD STRESS DEGRADED BY MFI RELATION.
ol AR Y s e R R T

C
1100 CONTINUE
STNMAX = FEMRES (1)
STNMIN = FEMRES (2)
STRMAX = FEMRES (3)
STRMIN = FEMRES (4)
A = VALIV(7)
B = INT(PFCOEF (1))
DSTRN = STNMAX - STNMIN
DSTRS = (STRMAX + STRMIN) /2.0
VAIDV = A/ (10**DSTRS*DSTRN**B)
WRITE (ICONSL,1101) DSTRN,DSTRS, VALDV
1101 FORMAT(’ <=UZFUN=> DSTRN,DSTRS,NF = ’/,3(2X,E12.5))
GOTO 9999
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Listing 1-4 Input Deck for the Monte Carlo Simulation

*FPI
C ... LOW CYCLE/MFI FATIGUE DEMONSTRATION (MFI YIELD STRESS DEGRADATION)
*RVNUM 7
*GFUNCTION 6
*METHOD 6
*PRINTOPT 0

*ANALTYP 0
*END

*EXACTPRM
24,3,0
4.0
0.99867
0.93271
*MONTE

100000, 12345., 1.0
*DEFRANVR
SIGYO

0.516473 0.02582 2.0

1562.0 46.7 2.0
- 0.5 0.0015 2.0
501.0 50.1 4.0
0.5 0.05 2.0
4.66667 0.233333 2.0

6.30351E-3 3.15176E-4 2.0
*END
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Listing 1-5 Section of Code from the RESPON User Routine used to Compute the Cycles to
Failure from the NESSUS Monte Carlo Simulation

c

c**************t*t******t*tt****t***************ﬁ*******************tt**

C* LOW CYCLE FATIGUE RESPONSE WITH ELASTOPLASTIC MATERIAL DAMAGE (MFI) *
o4 L g t hh kL h LT o urur

o
C B.H.THACKER..... 24-NOV-90
o]
240 CONTINUE
c
C ...INITIALIZE
o
EMAX = 0.015
EMIN = -0.015
E = 70.0
(o]
C ...CURRENT VALUES FOR THE RANDOM VARIABLES
o
SIGY0 = XSTAR(1)
TT = XSTAR(2)
QQQ = XSTAR(3)
RNT = XSTAR(4)
191819 = XSTAR(5)
H = XSTAR(6)
A = XSTAR(7)
IB = INT(COEF (1))
SSFACT = COEF(2)
SNFACT = COEF (3)
c
C ...COMPUTE CURRENT YIELD STRESS USING MFI DAMAGE MODEL
c
TTF = 2732.0D0
TTO0 = 68.0D0
RNTF = 1000.0D0
RNT0 = 10.0D0
§Y = SIGYO*(( TTF =~ TT )/( TTF - TTO ))**QQQ*
+ (( RNTF - RNT )/( RNTF - RNTO )) **Uyuu
o]
C ...COMPUTE MEAN STRESS AND PLASTIC STRAIN RANGE (CLOSED FORM)
c
DSTRS = H*(~E + 2*H) * (= (E**2*EMAX) + 2*EVH*EMAX +
+ E**2*EMIN + 2*E*SY - 2*H*SY)/ (2*E**3)
DPSTRN = EMAX-EMIN+(~SY-H*(EMAX-SY/E) - (SY+H* (EMAX-SY/E))) /E
c
C ...ADJUST BY THE CORRECTION FACTORS (TO CHECK AGAINST NESSUS)
c

DSTRS = DSTRS*SSFACT
DPSTRN = DPSTRN*SNFACT

C
C ...AND FINALLY, THE NUMBER OF CYCLES TO FAILURE
o]

RESPON = A/ (10**DSTRS*DPSTRN**IB)
GOTO 9999
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1 RISK DEFINITION AND MEASURE

Risk is defined as consequence of unreliability. Risk analysis involves three questions
1.  What can happen?
2.  What s the likelihood it will happen?
3.  Ifit does happen, what are the consequences?

In some instances failure itself may be considered as a measure of risk. But, or generally risk is measured
mostly in terms of consequences such as cost in dollars and program delay. It is possible to translate
all the consequences to dollar cost using appropriate models. Risk can be portrayed as a curve of relative
frequency vs risk measure (Figure 1). Such curves can then be used to determine acceptable risk. This
form of portraying risk is useful, as the question of acceptable risk cannot be determined without
considering cost and benefit.

In the space propulsion system risk analysis the entire range of risk curve is of interest (low consequence
high frequency range, medium consequence medium consequence range, high consequence low
frequency range, see Figure 1). The high consequence low frequency range deals with criticality one
failures. The mid range deals with many maintenance items. The low range might be of importance
when public good will and confidence in the program are to be considered.

2 EXPOSURE CLASSES

In the first step in risk calculation, underlying reliability of the components/systems has to be plotted
as probability of failure vs exposure classes. The exposure classes deal with usage of the engine, and
different failure modes will have different exposure items as relevant items. It is recommended for
space propulsion systems that provisions be made for the following exposure classes. They are

1. Number of start/stops of the engine (LCF damage).
2.  Total time in seconds as a function of power level (HCF damage).
3. Time at specific speed ranges (Resonance issues).

3 COST MODELS

In order to evaluate the consequence of engine loss, engine damage, and vehicle loss, it is necessary to
have an algorithm to calculate the cost elements that contribute to it. For the purposes of PSAM
applications, the aim is to develop a simple yet cost-effect model.

Considering engine cost, and considering top down, the engine cost is driven by major component costs.
It consists of fabrication, support, and production material costs. For example, a typical propulsion
system major component classification in terms of cost elements can be

Engine Final Assembly.
Low Pressure Pumps.

High Pressure Pumps.

Main Combustion Chamber.
Power Head.

Ducts.

System Installation.
Electrical Hamness.

el B ol o o o
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9.  Actuation Systems.
Given the fabrication/assembly man-hours, a composite wrap rate, and production material costs, the
total cost of the engine can be calculated. Additional items to be considered include lump sum items
which are supplied by subcontractors. If one is only interested in catastrophic failures, then the engine
cost can be added to other cost element such as vehicle cost, program delay cost (i.c., standing army),
payload loss cost, redesign and requalification cost, loss of business cost, etc. It is estimated that the
Challenger incident cost the U.S. 2 billion dollars. It might also be noted the cost of engines is small
compared to this total figure. Therefore, cost models for catastrophic failures should concentrate on
the other elements described above.
Then it is assumed that in this program in addition to catastrophic failures we are also interested in
noncatastrophic failures and costs associated with them such as maintenance, program delay, safe engine
shut down, and possible mission loss (but not vehicle). Just as unreliability has cost consequence,
increased reliability would also have a cost consequence in terms of increased qualification testing costs
as well as possible increase in payload to orbit cost because of increased engine weight. The ISB
(Specific Impulse) has a negative sensitivity and engine weight has a positive sensitivity to payload
cost.
The cost elements in the noncatastrophic failure modes should include:

1.  Cost of removal of the component assembly and installation costs for new component
assembly.

2. Cost of shipping of the component assembly to the plant if it is a factory repair.

3.  Cost of teardown and replacement in terms of labor hours (a function of tear down level),
labor cost, and new installation and material cost including cost of other mandatory
replaceable items.

4.  Green run test cost for the new component assembly.

Noncatastrophic failure in the engine level may still mean severe component failure in the subassembly
level cascading through several parts in the same assembly or other adjacent assembly. Thus, the model
should contain logic that links the components affected with their severity level so that a true cost
consequence can be calculated. It must be realized that there is always some uncertainty involved in
the cascading aspect of the failure scenario.

4 COST MODEL APPLICATION

A very large global model having the framework for other sensitivity studies in terms of total program
cost is beyond the scope of the PSAM effort even though the basic reliability data from PSAM may be
needed for use in the model. The total program cost management as a function of unreliability might
require answers to very difficult questions such as:
1.  What is optimum number of engines to build (cost per engine goes down as the number of
units increase) to sustain a traffic pattern?
2. What should be the target reliability and optimum design life of the engine that will result
in minimum cost?

3. Giventhe factthatrefurbishment of an old engine involves high engineering time as opposed
to a new engine, what is the optimum mix of old and new engines?
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4.  Given differing lives for a given reliability between many components and fixed budget,
which component and in what quantity to build that will best sustain the ground test and
flight traffic pattern?

Thus, it is advisable that PSAM concentrate on a small subset of cost models that contribute to structural
failure risk management. In this regard it is expected that as part of PSAM application studies a few
candidate problems from the SSME program will be studied in consultation with SSME Rocketdyne
management and PSAM contract team members. One candidate problem any deal with ground test
hardware and the other flight hardware. In ground test hardware, more risks are taken when compared
to flight. In ground tests, the components are used to their design limits to satisfy the fleet leader
requirements. Thus, acost benefit analysis based on probability of failures is feasible. In flighthardware,
the increased risk of failure when the rate power level is increased to 106% can be studied for identified
components sensitive to the power level change.
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A Fast Convolution Procedure for Structural Reliability Analysis

Y.-T.Wuand T. Y. Tomg
Southwest Research Institute, San Antonio, Texas 78228

Abstract

A probability analysis procedure is proposed that combines the convolution theorem with a
fast probability integration concept. The convolution theorem provides an exact solution for a sum
of random variables regardless of the shape of the distributions, and is suitable for engineering
problems that involve well-behaved performance functions with non-normal, continuous random
variables. The procedure consists of the following steps: (1) identify the most probable point of a
limit state, (2) establish a quadratic surface around the most probable point, (3) transform the
quadratic surface to a linear surface, and (4) apply a fast Fourier transform technique to provide a
fast convolution solution. Several numerical examples are provided to demonstrate the procedure.

Introduction

A central problem in probabilistic engineering analysis is the computation of the cumulative
distribution function (cdf) of one or more performance functions, Z(X) = fiX,, X,,..., X,) where X,
are the basic design (random) variables. Because performance functions are generally nonlinear
and random variables are generally dependent, the convolution theorem is usually thought to be
inapplicable to the problem. This report shows that the convolution theorem may be effectively
used when applied in conjunction with a fast probability integration concept.

Fast probability analysis is desirable in complicated engineering design problems. In
structural reliability analysis, efficient techniques have been developed based on a fast probability
integration concept that involves three major steps: (1) define a limit state and find a good
approximating point (e.g., a maximum likelihood point), (2) obtain an approximate function around
the approximating point, and (3) perform probabilistic analysis based on the approximate function.
The first two steps provide the basis for the effective use of the convolution theorem.

This report describes how to start from a "good" quadratic polynomial and perform a
transformation to linearize the quadratic function. Subsequently. the convolution theorem is used
to compute the probability. To speed up the convolution calculations. a discrete fast Fourier
transform (FFT) technique is suggested. The report discusses short cuts in implementing the FFT
technique.
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Fast Probability Integration

The fast probability integration (FPI) concept originated from the field of structural reliability
analysis. While the method requires that the performance functions be well-behaved, the concept
is general and may be applied to a wide variety of engineering problems. In this section, we will
describe the concept using the terms commonly used in structural reliability.

A limit state function is defined as:

§X)=2(X)-z=0 4y
where z is a real value. The g-function separates the design space into "failure” and "safe” regions.
From this definition, the cdf of Z at z, F(z), is the probability of [g < 0]. The cdf of Z can be
established by varying z.

Given the joint probability density function, fy(x), the probability of failure can be formulated

o= . [fmax @

where Q is the failure region. This multiple integral is in general very difficult to evaluate.
Alternatively, a Monte Carlo solution provides a convenient, but usually time-consuming
approximation. For practical engineering applications, efficient approximate solutions are desirable
and can be obtained by the recently developed structural reliability analysis methods [1, 2].

The first step in the reliability analysis involves the transformation of a generally dependent,
random vector X into an independent, standardized normal vector u. For example, the Rosenblatt
transformation has been suggested when the joint distribution is available (1, 2]. If only the marginal
distributions and the covariances are known, a transformation can be made to generate a joint normal
distribution that satisfies the given correlation structure [3].

By transforming g (X) to g(u), the most probable point (MPP) in the u-space, u’, is the point
that defines the minimum distance, B, from the origin to the limit state surface, see Fig. 1. This
point is most probable (in the u-space) because it has a maximum joint probability density on the
limit-state surface.

The MPP (also called design point) is the key approximation point for the FPI analysis. The
MPP can be obtained by formulating an optimization problem and by using proper optimization
methods. If a performance function is defined implicitly and requires computer-intensive analysis,
the procedure for identifying the MPP is critical. An effective procedure is proposed in Ref. (4]

for such problems.
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Joint Probability Density

Figure |. Dlustration of a Most Probable Point (MPP)

Typically, the g(u) or g(X) function is approximated by a polynomial function that

approximates the true function in the vicinity of the most probable point. Once the approximate
function is obtained, the associated failure probability can be easily computed. If the g(u)
formulation is used, several analytical solutions are available for linear and quadratic g (u) functions
[5]. For example, the first-order reliability method (FORM) estimate is:

P(g s0)=D(-P) 3
and the asymptotic second-order reliability method (SORM) estimate, derived by Breitung [6], is:

PESO =D TIA+P)™  per @

where ®(+) is the cdf of a standard normal distribution and K. j=1....,n — | are the main curvatures

of the limit-state surface at u".
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Because the errors in an approximated g -function tend to be small around the more significant

probability region, a fairly accurate solution may be achieved provided that the g =0 surface is
"smooth" and can be approximated by a quadratic surface in the u-space. This approach has been
widely used for structural reliability analysis. However, when the approximate linear or quadratic
g-functions involve non-normal random variables, no general closed form solutions are available.
Although approximation methods have been developed (e.g., see Ref. 7), the accuracy tends to
deteriorate when significantly non-normal variables are involved.

Fast Convolution Methodology

This section describes how to use the MPP to establish a linear or a quadratic polynomial and
perform a transformation to linearize the quadratic function. Once the function is lincarized, the
convolution theorem and a FFT scheme can be applied to compute efficiently the probability.

Establish Li Quadratic Functi

The advanced mean value iteration algorithm leads to a most probable point. Based on the
MPP, a first or second-order approximation function can be established in either the u- or the X-space
using numerical differentiation methods or least-square curve-fitting methods. The minimum
number of g-function calculations for establishing the first-order function is (n +1). A quadratic
function without mixed or cross-product terms requires aminimum of (21 + 1) function calculations.
A full second-order function requires at least (n + 1) * (n + 2)/2 function calculations.

Li ize Ouadratic Functi
Based on the EPI concept, a method for linearizing quadratic Z-functions is described in Ref.
[7]. A summary is described herein.

The first step is to approximate the Z-function by a second-order polynomial using Taylor’s
series expansion at the MPP, x°,

Z(X) = T a,(X,—x) +b, (X, - x,)’ | (5)
iwml
where g, and b, are coefficients. After rearranging terms,
n az n a. 2
=Y ——+ 3 bl X -|x -—

which may be transformed to a linear form
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ZW=c,+3 ¥, ™

2
. 4
Y, =Xi-( i "EE) 8)

Eq. (8) defines the transformation from X; to Y, where Y is a function of X; only. Thus,
Z(Y)=0 is linear; ¥;’s are independent if X;’s are independent. Given the pdf of X,, the pdf of Y,
can be easily computed.

where

Remarks
*  Aquadratic equation can be established by a least-square method. If proper data are used, this
method could reduce the error due to the exclusion of the mixed terms.

*  Insome cases, alog-transformation, i.e., X;"=1nX;, for some or all of the X;s may be preferred.

Further discussion can be found in Ref. [7].

Eq. (5) does not involve mixed terms. However, in the u-space, the mixed terms effect can be
included by the following procedure (Ref. 8). Let a full quadratic function be computed in the
u-space at the design point u* as follows:

sw =g+ £ Y oy
1 & dPg(u) .2
+§[i§l ou? oot~ ;)
+2,>_:”_;“§f§"’|.. [, - u) (u,-—u,-')]]=0 ©)
or, in matrix notation, after some arrangements:
g(u)=2g(u* +2g;(u—u*) +(u-u*G, (u-u*=0 (10)

where g, is the first-order gradient vector, and G, is the second-order derivatives matrix. This
equation can also be rewritten as follows:
gw)=u* (G u*-2g,)+ 2u’(g, - Gu"+u' G u=0 (11)

To eliminate the mixed terms, apply a rotational transformation

315



u=Rv (12)
where the vector v represents new standardized normal variables, R is the modal matrix for G,, and
R * R” =1 (identity matrix). G, can be represented as follows:

G.=RAR’ (13)
where A is the diagonal matrix of the eigenvalues of G,. By substituting Eq. 12 into Eq. 11, Eq.
11 becomes

g(V)=v*(Av®* - 2g) +2v (g, — Av*) +V Av=0 (14)

Thus there are no mixed terms in the v-space. If G, is regular, the eigenvalues, A,i=1,2,--,n

must not all equal to zero. In this case, Eq. 14 can be written as
. g =8+ 3 (v, -8)*=0 (15)
iwl

where §,,i =0, 1, 2, ..., n are constants.

If G, is singular, then one or more eigenvalues, A, i =1,2,---,m are equal to zero. Eq. 14

becomes a cylindrical equation as follows:

s =8+ M-8 +2 T vig,=0 (16)

imme
where v’ represents those components that have A, =0, and g, is the first-order gradient vector.

Once Eq. 15 or Eq. 16 is obtained, they can be linearized using the procedure described in Egs.
5 to 8. This procedure uses a full second-order function in the u-space to produce an exact SORM
solution. The Breitung’s SORM solution (Eq. 4) is an approximate SORM solution because it is
based on a parabolic approximation function which is obtained by a rotation of the u-axis followed
by an orthogonal transformation.

Fast Convolution
Assuming that the Z function has been linearized and properly scaled such that it can be
expressed as:
ZX)=X X, (17
1=

The characteristic function of a random variable X is:
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He(w) = [_fine™=ds 18)

—

which is the Fourier transform of the pdf, f(x). It is also known that the characteristic function of
a sum of independent random variables equals the product of the characteristic function, i.e.,

HA@) = 11 Hy() (19

Equation (19) is useful because it does not involve muitiple (nested) integrations, and

therefore, is particularly convenient for large n. The pdf of Z is
l I —jze8
f(z)= >n sz(u))e "dw (20)

from which the cdf can be computed.

Although one can use numerical integration based on Egs. (19) and (20), computational time
can be substantially reduced by applying a discrete FFT scheme. This allows quick design analysis.
In particular, the efficiency facilitates probabilistic sensitivity analysis in which the significance of
each random variable to the performance cdf is evaluated by changing the distribution parameters
(e.g., mean and standard deviation). To implement the fast convolution method, the range and the
number of points for FFT must be carefully considered.

EFT Range

In applying a FFT technique [¢.g., see Ref. 9], each pdf can be considered as a time varying
“‘signal.”’ Because in FFT each signal is treated as periodic, the range (signal length) must be wide
enough to avoid the wrap-around phenomena. Consider a Z-function: Z = X, + X,. In Fig. 2, the
two pdf’s have ranges R, = B and R, = D. If the FFT range, R,, is less than R, + R,, the resulting
pdf for Z would be incorrect because of the periodic assumption in FFT. This means that the
minimum range is

R,=XR, 21)

where each R; is a range that *‘sufficiently’’ defines the pdf. Because a large R, means that more
points are required to model the pdf shape sufficiently, R, should be chosen as small as possible to

maximize the computational efficiency.
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Referring to Fig. 2, the range may be reduced if the two signals are shifted such that A =0
and C = 0. This implies that the bounds must be defined first. One way of defining bounds is to
truncate the distribution at both tails using a probability tolerance, ;. For each random variable X,
the lower bound (x;) and upper bound (x;;) are defined as

10-Fy(xy) S€ (Right tail)
Fr(rg) S€  (Left tail) 22)

N\ 7
| 1 i | 1 1]

A-:-C B+D

Figure 2. Selection of Range For FFT
Because there is no "signal” before x;, the following transformation can be performed to
allow each signal to start at "time" zero.
Y=X,-x, (23)

The new pdf is truncated and ranges from 0 to R, = x;;; - ;. Define a new performance function
Z’ as:

Z'=ZY;=ZX,"'Z-V;L=Z_EX;L (24)
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Using the Z’ coordinate, the FFT range becomes:

R,= ig Xy — X, (25)
In defining the bounds, the tolerances €; should be selected such that the resulting error due
to the truncations is sufficiently small. Probability error bounds can be computed by summing
relevant tail probabilities. In evaluating the entire cdf involving a large n, the total range based on
Eq. (25) may be too wide. To minimize the FFT range, the following strategy can be used.
Consider a probability of failure analysis in which p, is small (say, p;< 0.1). In such a case,
the range can be substantially reduced. Let g =Z’—z’, where z’ is a value at the left tail of Z*
computed based on Eq. (24) and z. A conservative range is

R,=nz (26)
This is because all ¥, are positive and any Y; > z” would not contribute to [g <0]. The FFT

range based on Eq. (26) is relatively narrow because usually z’ € R;.

The above strategy can also be applied when F(z) is large (near 1). In such a case, a new
Z-function should be defined as Z" =~Z and F,-(2) = | - Fx(z) (a small probability) is calculated
using the FFT technique.

If R; <z’, the FFT range can be reduced, further, to:

R, = ¥ min(R, ) 27)

i
FFET Points
The number of FFT points, N, should be large enough to describe the shape of the pdf’s
sufficiently. In general, the number of points used for any variable, within each range R;, should
be greater than a minimum number, i.e.,

N, 2 N, (28)

If any one of the variables violates the above requirement, the total number of points should
be increased. However, the minimum number N, is related to the shape of the pdf and the machine
accuracy and cannot be generalized. A more convenient approach is to. beginning with a small
number (say, 128), repeatedly double the number of points until the solution converges to within a
tolerance.
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Ilustration Example

To illustrate the above procedure, a simple strength-stress (R-S) problem is used. The
Z-function is:
ZX) = R-S
The random variables are independent with the following distributions:
R ~ Nomnal (mean = 25 ksi; std. dev. =4.)
S ~ Normal (mean = 10 ksi; std. dev. =3.)

The step-by-step procedure for obtaining the cdf of Z is illustrated using Fig. 3 and described
as follows:

1. Obtain a linear performance function, Z, such that,

ZX = IX

im]
where X; are
X, = R ~Nommal(25.,4.)
X, = =S ~Nommal(-10,3.)

2. Define the range for each X; using €; = 10*. The results are shown in Table 1.

Table 1
Random variable Lower bound Upper bound Range
X, 2.552 47.448 44.896
X, -26.836 6.836 33.672

3. Perform transformation of the random variables (Eq. 23):
Y =X -x,

4. Define the new function Z”:

2 =Z-3 x, =Z+24.284

5. The FFT range for calculating the cdf of Z° is

R, = IR

o

78.568
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Figure 3. Illustration of the Fast Convolution Procedure
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6. Seclect the number of points. As an initial try, use N,= 128. This resultsin N, =74 and N,
=55. (In Fig. 3, N, = 32 is used.)
7. Perform discrete FFT foreach Y;
8. Multiply the results from step 7.
9. Perform an inverse FFT to obtain the pdf of Z’.
10. The pdf of Z is calculated based on
Z = Z'-24284.

Numerical Examples

A computer program was developed that implements the above analysis procedure. Seven
sample problems used to test the capability of the proposed procedure are presented below. To
simulate complicated structural reliability problems, we assume that the g-functions are not known
explicitly and are "defined” in computer programs.

Once the MPP is identified, the second step is to calculate the probability of failure, p, by
using several methods including the fast convolution method (FCM). A full, second-order
g-function in the u-space and a partial quadratic g-function in the X-space are generated whenever
applicable. Monte Carlo (MC) solutions based on the exact g-functions are generated for

comparisons.

Example |
The g-function is
gX) = R-L-D

in which R, L and D are random variables having the following distributions (mean, standard
deviation):

R ~ Weibull (50, 5)

L ~ Type I asymptotic extreme (10, 2)

D ~ Lognormmal (20.223,3.033)

The reliability analysis results using several methodologies are summarized in Table 2. Since
the limit state is linear in the X-space, the fast convolution method in the X-space should produce
an "exact” solution. The results indicate that all the methods produce good solutions except FORM.

Table 2. Reliability Results of Example 1
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Method FORM SORM FCM FCM Exact
(Breitung) (u-space) (X-space) (MC)
Probability 2.693e-3 3.502e-3 3.510e-3 3.571e-3 3.558e-3
of failure
Example 2
The g-function, taken from Ref. 1, is:
gX) =YZ-M

in which the three independent random variables have the following distributions:
Y ~ Lognormmal (mean = 40 ksi; Cov = 0.125)
Z ~ Lognormal (mean = 50 in’; Cov = 0.05)
M ~ Type 1 EVD (mean = 1000 in-kips; Cov = 0.2)
The reliability results are summarized in Table 3. The results again indicate that all the
methods are good except FORM.
Table 3. Reliability Results of Example 2

Method FORM SORM FCM FCM Exact
(Breitung) (u-space) (X-space) (MC)
Probability 3.051e-3 3.095¢-3 3.146e-3 3.136e-3 3.129e-3
of failure
Example 3
The g-function is:

gX) =X! +X,-8.7577
in which the two independent random variables have the following distributions:
X, ~ Normal (mean = 10; Cov =0.30)
X, ~Nomal (mean = 10; Cov = 0.30)
The reliability analysis results are summarized in Table 4. Since the g-function is quadratic,

the FCM method should produce an "exact” solution. The results indicate that SORM (Breitung)
is less accurate because of the parabolic approximation.
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Table 4. Reliability Results of Example 3

Method FORM SORM FCM FCM Exact
(Breitung) (u-space) (X-space) (MO)
Probability 1.11e-3 8.42¢4 6.89¢4 6.89¢-4 7.04e-4
of failure
Examplc 4

This example represents one of the problems for which the mixed terms are important. The
g-function is:

g(X) =X{ +X; -2X.X, +X, +X,
in which the two independent random variables have the following distributions:
X, ~ Normal (mean = 10; Cov = 0.50)

X, ~ Normal (mean = 10; Cov = 0.50)

The reliability analysis results are summarized in Table 5. The results indicate that FCM
(X-space) produces substantial error. The reason is because the mixed terms are neglected. Fig.
4 shows the substantial error in the incomplete (without mixed terms) quadratic function in the
u-space. The FCM (u-space) produces near exact solution because the g-function is quadratic
in the u-space. The FORM solution is the worst, while the SORM (Breitung) solution is good.

Table 5. Reliability Results of Example 4

Method FORM SORM FCM FCM Exact
(Breitung) (u-space) (X-space) MO
Probability 2.339¢-3 3.653¢4 3.248e4 1.201e-4 3.304e4
of failure
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Fig. 4. Illustration of Exact and Approximate
Limit States for Example 4
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Example 5

This example represents one of the problems for which the normal transformation distorts
the original limit state drastically such that the quadratic limit state is not a good approximation.
The g-function is:

8§(X) =R -S§
where

R ~ Lognormal (mean = 20; Cov = 0.25)
and S has a bi-modal pdf defined as:

- W i ol It
fi(5)=(0.99) o( P )+(o.01) c{ . )

1y Oy 1y G5) = (10, 2,40, 2)

where

The reliability analysis results are summarized in Table 6. Fig. 5 shows the exact limit
state and the full second-order approximation in the u-space. The FCM (X-space) method
produces near exact solution because the g-function is linear. The results suggest that the
g-function in the u-space cannot be adequately approximated by a quadratic function because of
the nonlinear normal transformation.

Table 6. Reliability Resuits of Example 5

Method FORM SORM FCM FCM Exact
(Breitung) (u-space) (X-space) MO
Probability 1.567e-2 1.517e-2 1.507e-2 2.347e-2 2.307e-2
of failure
Example ¢

The limit-state function, taken from Ref. 10, is:
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Fig. 5. Illustration of Exact and Approximate
Limit States for Example 5

- g(X)=C-X,-X,=0
in which C is a constant and X, and X, are exponentially distributed with cdf’s of

'}

Fy(x)=1-e i=1,2

The coefficient of variations are 100% for both X;. The p, results are shown in Table 7 in
which FORM is the result of the first-order reliability method (1, 2}, p;= ®(—B), where ®(+) is the
standard normal cdf and B is the minimum distance described earlier.

Table 7A Reliability Resuits of Example 6 (C=11)
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Method FORM SORM FCM FCM Exact
(Breitung) (u-space) (X-space) MC)
Probability 9.191E-5 2.1898E-4 2.233E-4 2.036E4 2.018E4
of failure
Table 7B Reliability Results of Example 6 (C = 13)
Method FORM SORM FCM FCM Exact
(Breitung) (u-space) (X-space) MO
Probability 1.359E-5 3.502E-5 2.701E-5 3.184E-5 3.234E-5
of failure

The FORM result is poor because the random variables are significantly non-normal. The
convolution approach in X-space, in theory, should produce an exact solution because the g-function
is linear. '

Example 7

This problem represents one of the conditions for which the FORM approximation is totally
unsatisfactory. The limit state, taken from Ref. 10, is a hyper-sphere:

Ri=ul+ul+...+ul
where all ¥;’s are standard normal variates. The minimum distance is the radius of the hyper-sphere,
R. Using the transformation:
| Y,=u}
the limit state can be linearized as:
g(Y)=R*-Y,-Y,-...-Y,=0
where each Y is a chi-square distributed variable with one degree of freedom. The exact solution
is:
p=1- XZ(R 2)
where %2(+) is the cdf of the chi-square distribution with n degrees of freedom. The p, results for

n =15 are shown in Table §.

Table 8A Reliability Results of Example 7 (R = 4)
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Method FORM SORM FCM FCM Exact
(Breitung) (u-space) (X-space) (MC)
Probability 5.965E-4 2.909E-2 1.807E-2 6.574E-3 6.8E-3
of failure
Table 8B Reliability Results of Example 7 (R = 5)
Method FORM SORM FCM FCM Exact
(Breitung) (u-space) (X-space) (MC)
Probability 6.234E-6 9.758E-4 5.256E-4 1.395E-4 14E4
of failure

Only the fast convolution (X-space) approach produces good solutions.

Summary and Discussions

As demonstrated, the proposed procedure is capable of producing ‘ ‘exact’’ solutions for highly
non-nomal distributions or non-standard distributions (e.g., bi-modal distribution). The
convolution procedure in combination with the fast probability integration concept provides a useful
tool for probability analysis. The major source of errors in the proposed procedure is in the
approximate performance functions. The fast convolution method is capable of producing “exact"
solutions for quadratic g-functions. However, it should be emphasized that the convolution solution
is only as good as the approximate g-functions in either.the u- or the X-space.

In general, normal transformation (i.e., from X to u) tends to introduce nonlinearity into the
limit state. Therefore, when highly non-normal (e.g., bi-modal distribution) random variables are
involved, it is desirable to use g(X) approximation. However, since the second-order mixed-terms
cannot be included for fast convolution analysis, significant errors due to the neglected mixed-terms
may be possible for some highly nonlinear g(X) functions. When the random variables are not
highly non-normal, full quadratic g(u) approximate functions are recommended. Additional
research is desired to develop a method to include the mixed-terms effect (in the X-space) in the
fast convolution analysis framework and to develop a method for selecting g(X) or g(u)
approximations.

Based on numerous test examples, we found that the numerical errors are typically less than
1% using a VAX 8700 machine which has 16 decimal digits precision. To investigate the accuracies
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that can be achieved at the extreme tails of the cdf, a CYBER 175 machine which has 32 decimal
digits precision was used. It was found that the range of accurate cdf values extends from u =135
to u =+ 7 (u is a standard normal variate). The required CPU time is in the order of 10 seconds.
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The sensitivity calculations required for probabilistic analysis are performed using a complete
reanalysis procedure. Many methods exist that are relatively more efficient than the present approach;
however, the reanalysis procedure used in the present version of PBEM is relatively simple, easy to
implement, and easily adaptable with the new versions of BEST3D.

The present version of PBEM is capable of performing sensitivity analysis for all types of problems
that BEST3D can handle including materially nonlinear problems. In the appendix, detailed
documentation on how to use PBEM in performing a perturbation analysis is presgnted.

A typical input data set for PBEM has the following features.
1.  Deterministic data set--same as the BEST3D data set.

2.  The deterministic data set should be terminated by *PROB option, to indicate the starting of
probabilistic data set.

3. Definition of the random variables.

4.  Definition of the perturbations.

The data set has similar options as in PFEM.

*PROB

This card should be used before the probability data deck to indicate the stating of probability data.
*DEFINE

This option is used to define the random variable (in terms of the number assigned to a random variable),
and it should be followed by the statements giving the mean and standard deviation, and the description
of the random variables.

The input format for defining a perturbation variable is as follows

*DEFINE jpvar
dmean dstdev
CNTL
..data block
Where
jpvar is the perturbation variable number.
dmean is the mean value of the random variable.
dstdev is the standard deviation of the random
variable.
CNTL is the actual case control card of BEST3D to
recognize the perturbation variable type.
Data block is a block of data specifying actual

perturbations. and depends on the type of
perturbation. The following section gives the
details about these options.

The first set of definitions required for defining the perturbations is the case control card of BEST3D.
They could be any one of the following for a perturbation number.

BCSE for boundary conditions perturbation.

. “‘v“ﬂ" w
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MATE for material data input perturbation.
BODY for body force perturbation.
GMR for geometric perturbations.
Two more parameters following the case control card should be given to specify the ID number of the

case control card (body force, boundary conditions, material property, and GMR) and type of boundary
conditions or modules or body force parameters (as in centrifugal acceleration etc.)

Boundary Condition Perturbations:

ID idno

type num

Ttlvliv2. vn

T2vliv2.vn

idno is the actual boundary condition type, DISP, TRAC, FLUX,
or TEMP.

num is the component number of the DISP or TRAC, and blank
for FLUX and TEMP.

t1,t2 time steps at which the boundary conditions are
specified.

vl v2.. are the rate of change of boundary condition for
specified node locations ( equivalent to the boundary
conditions in BEST3D)

T Signifies (as in BEST3D) the actual starting of the
specified boundary condition.

Identification of the B.C. type:

DISP displacement specified.

TRAC traction specified.

FLUX flux boundary condition specified.

TEMP Temperature boundary condition specified.

Example:

*DEFINE 1 .1

1000 10.0 .2

BCSE .3

ID ENDload .4

DIS 3 .5

T1100501 .6

Variations in the Maerial P I .

The same variable names as in BEST3D are employed for this purpose.

EMOD Young's Modulus.

POIS Poisson’s ratio.

ALPH Coefficient of thermal expansion, if thermal
body force exists.

DENS Density: if inertia and centrifugal body

forces are specified in the deterministic
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input.

TECH for perturbations in anisotropic material
property.
ORIE Material Orientation for anisotropic problem.
Example:
*DEFINE 3 .1
3.e+07,1.e+5 .2
MATE .3
ID MATI1 .4
EMOD 1.00.80.1 .5

Where the Young’s modulus is specified at three different temperatures. Similarly, the anisotropic
constants and material orientation properties should be specified. The statement number ..5 is to be
changed depending upon the type of variable (Ref. BEST3D users manual).

Variation of Body Farce P . .

In BEST3D, the following notations are used for identifying the body

force type, which is continued in PBEM.

CENT Centrifugal force.
INER Inertia force.
THER Thermal body forces.
Body Force Perturbation Types:
DIRE Direction of axis of rotation or acceleration.
SPEE Speed for centrifugal body force.
ACCE Acceleration due to gravity.
GMR Identification of GMR for thermal input. This card

should be followed by the perturbation to nodal
temperature and used only in conjunction with THERM

bodyforce.
Example :
*DEFINE 1
100. 10.
BODY
ID CENT
DIRE 0.00.01.0

The last statement above gives the rate of change of direction cosines as the perturbation type. Similarly
for DIRE, SPEE, and ACCE, the rate of change is prescribed in a format similar to the deterministic
data set.

The format of the above input statements should be changed as follows for the thermal body force.

ID GMR1
TEMP
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Where GMR1 is the region for which temperature is specified. nl, n2 are the node numbers, and t1, t2,
and t3 are the temperatures at three different time intervals.

G ic Variations;

In any perturbation, only nodal coordinates of a GMR (A BEM zone used in BEST3D) are perturbed.
Hence, it is sufficient to provide the rate of change of nodal coordinates values in a format similar to
the deterministic data set.

Example :

*DEFINE 2

100. 10.

GMR

ID GMR1

POINTS

1 001 00100

200 1000

........
........

.......

n x11 x21 x31

where

n node number

x1l, x21 and x31 rate of change of nodal coordinates for design
change.

*PERTURBATION

This is similar to PFEM.

*PERT jpert

jpvarl shiftl

This option is used to define a perturbed problem, constructed by prescribing small changes to one or

more perturbation variables.

jpert corresponds to the perturbation number.

jpvarl is the random variable number.

shiftl is the number of standard deviation by which the
jpvarl is changed.

Example:

*PERT 3

30011

The above statements indicate that the third perturbation involves a change of 0.01 standard deviation
in design variable number 3.

*END _
This is a card required for indicating the end of perturbation information data deck for PBEM.
Performing MVFO and AMVFO Using PBEM: (*MOYV)
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The present version of PBEM requires the manual development of FPI input deck for a particular
performance variable, unlike the PFEM. This, however, is not the case with advanced mean value
method. Once the mean value analysis is performed the solution for AMVFO can be found automatically
by executing the MOV .EXE file. MOV .EXE file is written exclusively for reading the information from
FPLMOV file and moving the design points accordingly in the BEST3D input deck, and solving for
the new value of the performance function for a particular probability level.
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Analysis Type Help Screen

This option defines the analysis soclution points and is specified to FPI with
the *ANALTYPE keyword in the parameter data. Several ways of selecting the
sciution points are available. Note, the minimum probability level for which
FPI will obtain a solution is -5 standard deviations; the maximum is +5
standard deviations.

Entire CDF (*ANALTYPE = ()

FPI will perform a search procedure in an attempt to locate points spanning
approximately -5 to +5 standard deviations. 9, 10 or 11 points will be chosen
and results will be chosen for these points. The points will be approximately
equally spaced along the response (or z) axis.

This search procedure can be time consuming and can sometimes cause numerical
errors. If difficulties arise with this method the user should choose the
Zlevel procedure (*ANALTYPE = 1),

This method can be used with Monte Carlo (*METHOD = 6), but not with
importance sampling (*METHOD = 5,7).

Plevels (*ANALTYPE = 2)

FPI will compute the solution at user-specified probability levels. The
probability value is entered in linear (0 to 1.0) format. When using this
format, FPI first performs a search in order to span the specified range of
probability. FPI then uses curve fitting to estimate the response
corresponding to the specified probability. FPI then runs a 2level procedure
at the predicted response value. If the predicted probability in terms of U
is within .1 % of the specified value, FPI proceeds to the next P level. If
the predicted probability is not within .1%, FPI iterates until convergence.

This procedure is very similar to computing the entire CDF; therefore, this
search procedure can also be time consuming and can sometimes cause numerical
errors. 1If difficulties arise with this method the user should choose the
Zlevel procedure (*ANALTYPE = 1),

This selection method cannot be used with Monte Carlo.

Zlevels (*ANALTYPE = 1)

FPI will compute the solution at user-specified response levels (2 values).
In contrast to the other two analyais selection methods, FPI will still
estimate the probability level even if it is outside -5 to +5 standard

deviations up to -10 to +10 standard deviations.
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This is the failsafe procedure for operating FPI and should be used when
others fail. ‘

This method can be used with Monte Carle with importance sampling (*METHOD =
5,7) but not conventional Monte Carlo (*METHOD = 6).

Confidence Interval Help Screen

Confidence intervals can be obtained on the CDF. These confidence intervals
are with respect to uncertainties in the underlying parameters of the random
variable statistics. Thus, if there is some uncertainty in the mean and
atandard deviation of a random variable, the uncertainty can be entered in the
form of a coefficient of variation of the mean and standard deviation. 90%
and 95% confidence limits will be obtained. The number of samples points to
use for determining the confidence intervals is recommended to be 10,000.

Entire CDF Help Screen

The only option necessary is the FPI parameter data *ANALTYPE = 0. No model
data is necessary. If problems arise using this selection method, try
Zlevels.

G Function Help Screen

The G function option defines the equation which divides the probability
region into failed and safe regions. There are several options for defining
the G function in NESSUS which can be classified into two types, explicit g
functions and implicit g functions.

Explicit performance functions, i.e., closed form.
Use *GFUNCTION = 0,10 or 6. The g function must be defined in a user-defined
routines USER or RESPON.

To use subroutine USER, option 0 or 10, the closed form equation must be
written in a special format, x(1) = £(x(2),...,x(n)). If this is not
possible, then option 6, subroutine RESPON, must be used. 1In our experience,
subroutine USER is the more numerically robust and should be used if possible.
This option is limited to zlevels (*ANALTYPE = 1) analysis only.

Subroutine RESPON, option 6, is more general and allows the user more freedom
in programming the g function. However, the user should be aware that he must
select distribution parameters for the random variables that make sense or a
numeric error may result. For example, the distribution for Poisson’s ratio
should not allow NU to be greater than 1/2 because meaningless results or
program crashes may result. Program crashes such as square root of a negative
number, etc., can often result when using this option, especially when using
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analysis type 0 or 2. 1If this happens the user should first try a 2Zlevel
procedure and also examine the input data to see if it is realistic. This
option can be used with analysis selection types 0,1, or 2.

Implicit - *GFUNCTION = 1,2
This option is useful when coupling FPI with other complicated analysis
engines which define the g function such as the finite element method.

The g function is defined by a set of input data points. The data points are
input with the *DATASETS option. FPI performs a regression analysis to
compute a linear, option 1, or quadratic, option 2, g function. The current
version of the code is limited to 100 datasets. Note, for many datasets
regression analysis can be performed outside of NESSUS and the resulting
equation programmed as an explicit g function. Analysis of implicit g
functions is most accurate when performed within the Advanced Mean Value
algorithm.

Random Variable Help Screen

The random variable definitions in NESSUS require a mean, standard deviation
and a distribution type. Under NESSUS 4.2, the data is input in two
locations, the *DEFINE card in the FEM input data and the *DEFRANV keyword in
the FPI input data. The random variable definitions between the two keywords
often coincide, but not always. The FEM random variables are limited to FEM
quantities such as properties, pressures, etc. Therefore, the *DEFINE cards
may be intermediate or psuedo random variables. The *DEFRANV random variables
are always the independent random variables.

To assist the user in defining the random variable parameters, a list of
default distribution parameters has been compiled. These can serve as
ballpark estimates if problem specific data is not available.

Plavels help screen

The FPI parameter data *ANALTYPE = 2 must be input. The number of probability
levels and their values must be input in the model data section using the
*PLEVELS keyword. If problems arise using this selection method, try Zlevels.

Solution Method Help Screen

There are two basic solution methods in NESSUS, fast probability integration
and Monte Carlo. The solution method is selected with the *METHOD parameter
keyword.
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The fast probability integration methods have two options, the first order
reliability method, option 0, and the advanced first order reliability method,
option 1. This is more accurate but more time consuming. In addition, forx
some problems numerical errors can arise with this method which don’t show up
for the first order reliability method. The advanced method should always be
tried first,

Monte Carlo methods are an alternative solution method. Conventional Monte
Carlo and importance sampling (Harbitz method) are included in NESSUS.
Importance sampling is more efficient for obtaining the probability at a
single response point, but is not designed to compute the entire CDF.
Importance sampling can only be used at specified response levels. 1If the
entire CDF is desired, conventional Monte Carlo should be used. One solution
strategy is to compute the CDF between -3 to +3 standard deviations with
conventional Monte Carlo and compute selected points in the tails with
importance sampling. Note from the FPI theoretical manual that the efficiency
of importance sampling is very high for few random variables, but degrades
rapidly as the number of random variables increases.

Zlevels help screen

The FPI parameter data *ANALTYPE = 1 must be input. The number of response
levels and their values must be input in the model data section using the
*ZLEVELS keyword. This is the most failsafe method.
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There are three parts of the data decks connected with probabilistic analysis that are to be
generated by NESSUS/SHELL. One is the deterministic data deck *FEM part two in the input data
deck). The second part is the data deck *PFEM (part one in the input data deck) and the third part
is the data deck *FPI (part three in the input data deck). The task is to prepare as much of the
probabilistic data deck as possible, using the data deck for the deterministic problem as part fo the
necessary knowledge base. The probabilistic data deck is to be inferred from the deterministic data
deck, using the logic of NESSUS and past experience (expert knowledge) in creating probabilistic
data decks.

1 Part one: the data in *FEM deck

This part of the data is in the *FEM data deck. Most of new data structures are connected
with perturbation of the random variables. These are:

data keyword *PERTURB in parameter data section
data keyword *PERTURB in model data section
data keyword *DEFINE in model data section

data keyword *MOVE in model data section

data keyword *RECORD in model data section

A L

1.1 Keyword *PERTURB in parameter data section

This keyword will define how many random variables will be taken into consideration and
what is variable. The form of this keyword is as follows

*PERTURB npvar (number of perturbation variables) npert (number of perturbations)
TYPE1 (TYPE of random variable)
TYPE2

.....

where the number of perturbation variables and the number of perturbations may be input
by users (usually the number of perturbation variables is not equal to the number of TYPE). The
knowledge base system can give a suggestion on the minimum number (the number of random
variables) of perturbations. The number of perturbations depends on the number of random variables
and the choice of FPI method (for first-order mean value method it should be at least equal to the
number of variables, for second-order method it should be at least equal to one plus two times the
number of variables). Selection of a large number of perturbations will cost more computer time,
but the result could be more accurate. Usually the first order mean value method will be used, so
in this system only the first order mean value will be taken into consideration.

The SHELL will define all the TYPE of random variables automatically after all random
variables are defined by users. The TYPE quantities which can be selected are controlled by the
type of the problem prescribed in the deterministic data deck. For instance if the problem is a static
analysis, the choice of ACCELERATION, VELOCITY and HARMONIC are not appropriate and
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will not appear in the choice menu.

For two or three dimensional problems the choice of

BEAMSECTION, which is only valid for element 98, will not appear in the choice menu, etc.
Thus, SHELL can use the part of the knowledge base represented by the deterministic data deck.
In the *PERTURB keyword, there are seventeen TYPE of random variables that may appear

in the choice menu:

ACCELERATION Initial acceleration ( dynamic problem ).

BEAMSECTION Beam section properties ( just for beam element ).

COORDINATES Mesh geometry ( any problem ).

DAMPING Damping constants ( dynamic problem with damping option ).
DISPLACEMENT Initial displacement ( any problem except eigenvalue problem ).
DISTRIBUTEDLOAD | Element distributed loads ( any problem except eigenvalue problem ).
FORCES Nodal forces ( any problem except eigenvalue problem ).
HARMONIC Harmonic excitation parameters(dynamic problem with harmonic option)
ORIENTATION Material orientation ( any problem ).

PRESSURE Nodal pressures ( any problem except eigenvalue problem ).
PROPERTIES Material properties ( any problem ).

PSD Power spectrum excitation ( dynamic problem with PSD option ).
SPRINGS Base spring stiffness ( any problem ).

TEMPERATURE Nodal temperatures ( any problem ).

UPERT User defined loading perturbation ( any problem ).

VELOCITY Initial velocity ( dynamic problem ).

YIELDFUNCTION Yield function curves ( plastic problem ).

1.2 Keyword *PERTURB in model data section

The data in this keyword connected with the data in this keyword *DEFINE will determine
how large the perturbation will be taken. The form of this keyword is

*PERTURB jpert (the perturbation number)
jpvarl (the random variable number) shiftl (the shift number)

jpvar2 shift2

Usually this keyword can be prepared from the SHELL knowledge base, because the shift
number for the first n perturbations can be set to default value 0.1 for most cases; if the second-order
FPI method is chosen or npert in *PERTURB in parameter section is set larger than the number of
random variables, the shift number in the following perturbations should be set to default value -0.1.
In every perturbation process just one random variable is taken into consideration, so the jpert and
jpvarn will just take the serial number of random variable or jpert will be set to a serial number
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larger than random variables for the choice of larger npert in *PERTURB or the second-order FPI
method.

1.3 keyword *DEFINE in model data section

This data keyword connected with the knowledge base data in keyword *PERTURB in the
model data section will define how large the perturbation of the random variables will be taken.
Every part of these data has the similar form

*DEFINE jpvar (a serial random variable number)

dmean (mean value) dstdev (standard deviation)

TYPE (see the Table above) jparam (optional for some random variables)
DATA BLOCK (a data block)

Obviously, all the mean values of the random variables and jparam should be the same as the
value given for the deterministic problem. Thus, the mean values will come directly from the
deterministic data section. The standard deviation for every random variable should be input by the
users or specified by a default value dictated by expert opinion.

The following table concerns the input of the data in data block

TYPE dmean | dstdev | jparam | Data Block
ACCELERATION k i k P
BEAMSECTION k i k P
COORDINATES k i k p
DAMPING k i k p
DISPLACEMENT k i k p
DISTRIBUTEDLOAD k i k P
FORCES k i k P
HARMONIC k i k p
ORIENTATION k i k p
PRESSURE k i k p
PROPERTIES k i k p
PSD k i k p
SPRINGS k i k P
TEMPERATURE k 1 k p
UPERT k i k p
VELOCITY k i k p
YIELDFUNCTION k i k p

k: known from the deterministic knowledge base
i: user override of default available (by input the value of COV)
p: partly input by user, using expert advice.
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The most difficult thing is the data block which defines the total change of the random
variable for perturbation, i.e., if the perturbation shift number in *PERTURB keyword is given and
the corresponding number in the data block is k, then the total change for this corresponding variable
will be (k*shift*dstdev). In most cases the number k will be set to one. But, for the perturbation
of the coordinates, users will be required to input these data.

The format of the data blocks should be predetermined by the format in the deterministic data
deck, users don’t need to be asked to input every component data in the data block (most of them
will be set to zero automatically). However the node where this random variable will be perturbed
must be inpute by the user. In general two pieces of information should be inpute by the user in a
block data:

a. the nodes where the random variable will be perturbated.

b. which component in this group of data is random variable.

For instance, if the Poisson’s ratio (which is the third component in property data group
*PROPERTY) from node 1 to node 34 should be perturbed, the following data block will be
generated.

1340.0.1.0.0. 0.

and so on (usually the perturbation value is default to all nodes).

Usually the data block under this keyword is the largest data block for probabilistic analysis.

1.4 keyword *MOVE in model section

This keyword is to define a new unperturbed problem, i.e., a new deterministic problem for
which a shift of the perturbed variables will be computed; additional perturbations centered about
the new unperturbed (with the shifted value of random variable) state may be computed.

The format of this keyword is

*MOVE
jpvarl (the number of random variable) shiftl (the shift number)

jpvar2 shift2

jpvarn shiftn

The shifted random variable will equal to shift*dstdev. Usually, the user will not use this
keyword. The value of shift could be set to one or be input by the users. If *PFEM module is
included in the input data file, this keyword will be automatically inserted by SHELL.
1.5 keyword *RECORD in model section

This keyword is used to select which results should be stored and/or updated in the NESSUS
perturbation database. It seems advisable to use the default values (all of the results obtained in the
course of a given run are stored and/or updated in the database).
2 Part two: the data keyword in *PFEM

This part concerns the data in *PFEM. Most of the data are connected with the perturbation
of the random variables. The data can be divided into two groups
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2.1

2.2

2.3

2.4

a. MYV analysis (*MVFO)
b. AMY analysis (*AMVFO)

*RESTART

The format of this data keyword is

*RESTART parameter

where for

parameter = 0 (default): no restart, the NESSUS must generate the database.
parameter = 1: FEM database already exits, bypass FEM database generation.
parameter = 2: MV solution already computed. Perform AMYV solution directly.
The parameter will be set to the default value of zero.

*DATATYPE

The format is

*DATATYPE parameter

The parameter here specifies the data type to extract

=0 Incremental (dynamic an plastic problem)

=1 Eigenvalue (eigenvalue problem)

=2 Harmonic/spectral (harmonic analysis)

The correct value will be set according to the *PFEM keywords.

*HARM

The format is

*HARM parameterl parameter2

parameter]l = beginning harmonic/spectral number of MV analysis (default = 1)

parameter2 = ending harmonic/spectral number for MV analysis (default = parameterl)

This is only for harmonic analysis and must be input by users.
*RANVAR

The format is

*RANVAR parameter (the number of random variables)

Varl Var2 ... VarN
The default is to use all random variables-1, n.
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2.5 *RESPTYPE
The format is

*RESPTYPE parameter

This keyword defines the response variable to extract from the data base.
by the users. The SHELL will give advice to other users about the choice of the

physical meaning of the choice).

01 a total displacement component

02 a total strain component

03 a total stress component

11 a plastic strain component

12 a backstress component

13 a creep strain component

14 a thermal strain component

17 a generalized strain component ?

13 a generalized stress component ?

30 " the eigenvalue for the mode

31 | a modal displacement ( eigenvector ) component
32 a modal strain component, if available
33 a modal stress component, if available
35 the frequency in radian per time
36 the frequency in cycles per time

31 a real compenent of the displacement
52 a real compenent of the strain

53 a real compenent of the stress

61 an imaginary compenent of the displacement
62 an imaginary compenent of the strain
63 an imaginary compenent of the stress
71 the amplitude of the displacement
72 the amplitude of the strain

73 the amplitude of the stress

81 the phase of the displacement

82 the phase of the strain

83 the phase of the stress

91 the mean square value of the displacement
92 the mean square value of the strain
93 the mean square value of the stress
96 a stress velocity value ?
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The possible choices will depend on the type of the problem, i.e., not all the choices will be
valid for all types of the problems. For the five different kinds of problems, the following table of
knowledge-based options will be used to provide only those options appropriate for the analysis.
Descriptions will replace the numbers shown.

STATIC | DYNAMIC | EIGENVALUE | PLASTIC | CREEP | PSD
01 31 30 01 01 91
02 52 31 02 02 92
03 53 32 03 03 93
14 61 33 11 13
17 62 35 12 17
18 63 36 17 18

71 18
72
73
81
82
83
2.6 *INCR
The format is

*INCR parameterl parameter2
parameter] = beginning increment number for MV analysis (default = 0)
parameter2 = ending increment number for MV analysis (default = parameter])
This is for dynamic and plastic analysis and must be input by users or set to the default value of 0.
2.7 *COMP

This defines which component of the response variable will be the function analyzed by FPL.
The form of this data keyword is

*COMP parameter] (begin component) parameter2 (end component)

This data must be input by the user. However, SHELL will give the users information about
the physical meaning of the component according to the parameter selected in *RESPTYPE keyword.

2.8 *MODE

The format is
*MODE parameter]l parameter2
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parameter] = beginning mode number for MV analysis (default = 1)
parameter2 = ending mode number for MV analysis (default value will be set to 3 by

SHELL)

2.9

2.10

This is only for eigenvalue analysis and must be input by users.
*NODE

The format is

*NODE parameter] parameter2

parameter] = beginning node number for MV analysis
parameter2 = ending node number for MV analysis

*PERT
The format is

*PERT parameter
Pertl Pert2 ... PertN

parameter is the number of the perturbations to be extracted and default to all perturbations.
Part three: the data keyword in *FPI

A lot of the data in this part will be obtained from the keyword data defined in the previous

two data sections.

3.1

*RVNUM
The format is

*RVNUM parameter (the number of random variables)
DATA BLOCK (with the mean value, standard deviation and distribution)

The number of random variables will be obtained from *RANVAR in *PFEM deck directly.

The mean value and standard deviation can be obtained from previous input, and users will be
requested to input the distribution of the random variables.

3.2

*GFUNCTION
The format is

*GFUNCTION parameter
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In probabilistic analysis using NESSUS/FEM, the value of the parameter should be set to one
or two, depending on the choice of first or second order. The expert opinion of the FPI author is
one (first order FPI analysis by data set), so the default will be set to one.

3.3  *DATASETNM

The format is

*DATASETNM parameter (the number of data sets)

The default value of the parameter will be set to the perturbation number plus one.

34 *METHOD

The format is

*METHOD parameter (the option of method)

For FEM analysis the value of the parameter can be selected by the users as 0 (first order
reliability method) or 1 (advanced first order reliability method). The default will be 1.

3.5 *ANALTYP
The format is
*ANALTYP parameter (the type of analysis)

The value of the parameter can be selected by the users to be 0 (FPI defined P levels), 1 (Z
levels) or 2 (P levels) by users; the default will be 0.

3.6 *PRINTOPT
The format is
*PRINTOPT parameter

The value of the parameter will be 0 (short print out) or 1 (long print out), with 0 as the
default.

3.7 *ZLEVELS
The format is

*ZLEVELS parameter (the number of Z levels)
zlevell zlevel2 ... zleveln
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Valid only if ANALTYPE is set to 1. These data should be input by users.
3.3 *PLEVELS
The format is

*PLEVELS parameter (the number of P levels)
plevell plevel2 ... pleveln

Valid only if ANALTYPE is set to 2. These data should be input by users or set to default
value -5, 4, -3,-2,-1,1,2,3,4,5.

3.9 *DEFRANV
The format is

*DEFRANV

namel

mean standard-deviation distribution
name2

mean standard-deviation distribution
namen

mean standard-deviation distribution

All the information here is input by users when the random variables are defined. The

system will supply a default distribution and standard deviation to users based on the expertise
supplied by Prof. Wirsching.
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